TY - CONF
T1 - A 1,600 year record of paleoseasonality from the neotropics of Central America and its implications for rainfall predictability in agricultural societies
AU - Prufer, Keith
AU - Breitenbach, Sebastian
AU - Baldini, James
AU - Braun, Tobias
AU - Ray, Erin
AU - Baldini, Lisa
AU - Polyak, Victor
AU - Lechleitner, Franziska
AU - Marwan, Norbert
AU - Kennett, Douglas
AU - Asmerom, Yemane
PY - 2020/3/23
Y1 - 2020/3/23
N2 - For millions of people living in the humid neotropics seasonally predictable rainfall is crucial for agricultural success and food security. Understanding long-term stability and volatility of seasonal rainfall distributions should be of concern to researchers and policy makers. However, reconstructions of paleorainfall seasonality in the neotropics have been constrained by a lack of precisely dated and sub-annually resolved records. We present a 1,600-year rainfall paleoseasonality reconstruction from speleothem sample Yok G, from Yok Balum Cave located in southern Belize, Central America. Yok G grew continuously from 400 C.E. to 2,006 C.E. and its age is constrained by 52 U-series dates with a mean error of ~7 years. The isotope record consists of 7,151 δ18O and δ13C measurements at ~0.22-year resolution allowing us to detect the presence and amplitude of annual wet-dry cycles. In Belize rainfall distribution and seasonality controls are currently dominated by the annual migration of the intertropical convergence zone (ITCZ) with marked meridional contrast. The Yok G record suggest distinct changes in seasonality at multi-centennial intervals. The earliest portion of the record (400-~850 C.E.) shows little intra-annual seasonal variation, the period from ~850-1400 C.E. has highly variable annual oscillations and periods of low seasonality, while the period from 1,400-2,006 C.E. shows well developed seasonal signals. Element ratios (Mg/Ca, Sr/Ca, and U/Ca) are used to assess Prior Carbonate Precipitation in the epikarst system. We review these changes and the isotopic record from Yok G and discuss tools for interpreting the stability and volatility in seasonal rainfall distributions and possible implications for past and modern agricultural societies.
AB - For millions of people living in the humid neotropics seasonally predictable rainfall is crucial for agricultural success and food security. Understanding long-term stability and volatility of seasonal rainfall distributions should be of concern to researchers and policy makers. However, reconstructions of paleorainfall seasonality in the neotropics have been constrained by a lack of precisely dated and sub-annually resolved records. We present a 1,600-year rainfall paleoseasonality reconstruction from speleothem sample Yok G, from Yok Balum Cave located in southern Belize, Central America. Yok G grew continuously from 400 C.E. to 2,006 C.E. and its age is constrained by 52 U-series dates with a mean error of ~7 years. The isotope record consists of 7,151 δ18O and δ13C measurements at ~0.22-year resolution allowing us to detect the presence and amplitude of annual wet-dry cycles. In Belize rainfall distribution and seasonality controls are currently dominated by the annual migration of the intertropical convergence zone (ITCZ) with marked meridional contrast. The Yok G record suggest distinct changes in seasonality at multi-centennial intervals. The earliest portion of the record (400-~850 C.E.) shows little intra-annual seasonal variation, the period from ~850-1400 C.E. has highly variable annual oscillations and periods of low seasonality, while the period from 1,400-2,006 C.E. shows well developed seasonal signals. Element ratios (Mg/Ca, Sr/Ca, and U/Ca) are used to assess Prior Carbonate Precipitation in the epikarst system. We review these changes and the isotopic record from Yok G and discuss tools for interpreting the stability and volatility in seasonal rainfall distributions and possible implications for past and modern agricultural societies.
UR - https://doi.org/10.5194/egusphere-egu2020-18100
U2 - 10.5194/egusphere-egu2020-18100
DO - 10.5194/egusphere-egu2020-18100
M3 - Other
T2 - EGU2020: Sharing Geoscience Online
Y2 - 4 May 2020 through 8 May 2020
ER -