TY - JOUR
T1 - A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization
AU - Lwin, Khin
AU - Qu, Rong
AU - Kendall, Graham
PY - 2014/11
Y1 - 2014/11
N2 - Portfoliooptimizationinvolvestheoptimalassignmentoflimitedcapitaltodifferentavailablefinancialassetstoachieveareasonabletrade-offbetweenprofitandriskobjectives.Inthispaper,westudiedtheextendedMarkowitz’smean-varianceportfoliooptimizationmodel.Weconsideredthecardinality,quan-tity,pre-assignmentandroundlotconstraintsintheextendedmodel.Thesefourreal-worldconstraintslimitthenumberofassetsinaportfolio,restricttheminimumandmaximumproportionsofassetsheldintheportfolio,requiresomespecificassetstobeincludedintheportfolioandrequiretoinvesttheassetsinunitsofacertainsizerespectively.Anefficientlearning-guidedhybridmulti-objectiveevolutionaryalgo-rithmisproposedtosolvetheconstrainedportfoliooptimizationproblemintheextendedmean-varianceframework.Alearning-guidedsolutiongenerationstrategyisincorporatedintothemulti-objectiveopti-mizationprocesstopromotetheefficientconvergencebyguidingtheevolutionarysearchtowardsthepromisingregionsofthesearchspace.Theproposedalgorithmiscomparedagainstfourexistingstate-of-the-artmulti-objectiveevolutionaryalgorithms,namelyNon-dominatedSortingGeneticAlgorithm(NSGA-II),StrengthParetoEvolutionaryAlgorithm(SPEA-2),ParetoEnvelope-basedSelectionAlgorithm(PESA-II)andParetoArchivedEvolutionStrategy(PAES).ComputationalresultsarereportedforpubliclyavailableOR-librarydatasetsfromsevenmarketindicesinvolvingupto1318assets.Experimentalresultsontheconstrainedportfoliooptimizationproblemdemonstratethattheproposedalgorithmsignificantlyoutperformsthefourwell-knownmulti-objectiveevolutionaryalgorithmswithrespecttothequalityofobtainedefficientfrontierintheconductedexperiments
AB - Portfoliooptimizationinvolvestheoptimalassignmentoflimitedcapitaltodifferentavailablefinancialassetstoachieveareasonabletrade-offbetweenprofitandriskobjectives.Inthispaper,westudiedtheextendedMarkowitz’smean-varianceportfoliooptimizationmodel.Weconsideredthecardinality,quan-tity,pre-assignmentandroundlotconstraintsintheextendedmodel.Thesefourreal-worldconstraintslimitthenumberofassetsinaportfolio,restricttheminimumandmaximumproportionsofassetsheldintheportfolio,requiresomespecificassetstobeincludedintheportfolioandrequiretoinvesttheassetsinunitsofacertainsizerespectively.Anefficientlearning-guidedhybridmulti-objectiveevolutionaryalgo-rithmisproposedtosolvetheconstrainedportfoliooptimizationproblemintheextendedmean-varianceframework.Alearning-guidedsolutiongenerationstrategyisincorporatedintothemulti-objectiveopti-mizationprocesstopromotetheefficientconvergencebyguidingtheevolutionarysearchtowardsthepromisingregionsofthesearchspace.Theproposedalgorithmiscomparedagainstfourexistingstate-of-the-artmulti-objectiveevolutionaryalgorithms,namelyNon-dominatedSortingGeneticAlgorithm(NSGA-II),StrengthParetoEvolutionaryAlgorithm(SPEA-2),ParetoEnvelope-basedSelectionAlgorithm(PESA-II)andParetoArchivedEvolutionStrategy(PAES).ComputationalresultsarereportedforpubliclyavailableOR-librarydatasetsfromsevenmarketindicesinvolvingupto1318assets.Experimentalresultsontheconstrainedportfoliooptimizationproblemdemonstratethattheproposedalgorithmsignificantlyoutperformsthefourwell-knownmulti-objectiveevolutionaryalgorithmswithrespecttothequalityofobtainedefficientfrontierintheconductedexperiments
U2 - 10.1016/j.asoc.2014.08.026
DO - 10.1016/j.asoc.2014.08.026
M3 - Article
SN - 1568-4946
VL - 24
SP - 757
EP - 772
JO - Applied Soft Computing Journal
JF - Applied Soft Computing Journal
ER -