TY - JOUR
T1 - A new behavioural apparatus to reduce animal numbers in multiple types of spontaneous object recognition paradigms in rats
AU - Ameen-Ali, Kamar
AU - Eacott, Madeline
AU - Easton, Alexander
PY - 2012/8/16
Y1 - 2012/8/16
N2 - Standard object recognition procedures assess animals’ memory through their spontaneous exploration of novel objects or novel configurations of objects with other aspects of their environment. Such tasks are widely used in memory research, but also in pharmaceutical companies screening new drug treatments. However, behaviour in these tasks may be driven by influences other than novelty such as stress from handling which can subsequently influence performance. This extra-experimental variance means that large numbers of animals are required to maintain power. In addition, accumulation of data is time consuming as animals typically perform only one trial per day. The present study aimed to explore how effectively recognition memory could be tested with a new continual trials apparatus which allows for multiple trials within a session and reduced handling stress through combining features of delayed nonmatching-to-sample and spontaneous object recognition tasks. In this apparatus Lister hooded rats displayed performance significantly above chance levels in object recognition tasks (Experiments 1 and 2) and in tasks of object-location (Experiment 3) and object-in-context memory (Experiment 4) with data from only five animals or fewer per experimental group. The findings indicated that the results were comparable to those of previous reports in the literature and maintained statistical power whilst using less than a third of the number of animals typically used in spontaneous recognition paradigms. Overall, the results highlight the potential benefit of the continual trials apparatus to reduce the number of animals used in recognition memory tasks.
AB - Standard object recognition procedures assess animals’ memory through their spontaneous exploration of novel objects or novel configurations of objects with other aspects of their environment. Such tasks are widely used in memory research, but also in pharmaceutical companies screening new drug treatments. However, behaviour in these tasks may be driven by influences other than novelty such as stress from handling which can subsequently influence performance. This extra-experimental variance means that large numbers of animals are required to maintain power. In addition, accumulation of data is time consuming as animals typically perform only one trial per day. The present study aimed to explore how effectively recognition memory could be tested with a new continual trials apparatus which allows for multiple trials within a session and reduced handling stress through combining features of delayed nonmatching-to-sample and spontaneous object recognition tasks. In this apparatus Lister hooded rats displayed performance significantly above chance levels in object recognition tasks (Experiments 1 and 2) and in tasks of object-location (Experiment 3) and object-in-context memory (Experiment 4) with data from only five animals or fewer per experimental group. The findings indicated that the results were comparable to those of previous reports in the literature and maintained statistical power whilst using less than a third of the number of animals typically used in spontaneous recognition paradigms. Overall, the results highlight the potential benefit of the continual trials apparatus to reduce the number of animals used in recognition memory tasks.
U2 - 10.1016/j.jneumeth.2012.08.006
DO - 10.1016/j.jneumeth.2012.08.006
M3 - Article
SN - 0165-0270
VL - 211
SP - 66
EP - 76
JO - Journal of Neuroscience Methods
JF - Journal of Neuroscience Methods
ER -