TY - JOUR
T1 - Advancing sustainable building through passive cooling with phase change materials, a comprehensive literature review
AU - Ghamari, Mehrdad
AU - See, Chan Hwang
AU - Hughes, David
AU - Mallick, Tapas
AU - Reddy, K. Srinivas
AU - Patchigolla, Kumar
AU - Sundaram, Senthilarasu
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/6/1
Y1 - 2024/6/1
N2 - Phase Change Materials (PCMs) present cutting-edge technology with substantial promise for advancing sustainable and energy-efficient cooling in buildings. These materials can absorb and release latent heat during phase transitions, facilitating thermal energy storage and temperature regulation. This comprehensive literature review explores various strategies and methods for implementing passive cooling with PCMs in buildings. The integration of PCMs enhances multiple passive cooling approaches, including solar control, ground cooling, ventilation-based heat dissipation, radiative cooling, and thermal mass-based heat modulation. The analysis delves into PCM classifications, encapsulation techniques, melting enthalpies, integration into diverse building envelopes, and performance across different climates. The findings from this comprehensive review indicated that PCM walls introduce a 2-hour delay in heat transfer and mitigate external temperature fluctuations. Windows equipped with PCM panels reduce heat transfer by 66 %. Combining PCMs with nocturnal radiative cooling leads to interior surface temperature reductions exceeding 13 °C. Natural ventilation with PCMs results in notable energy savings of up to 90 % in hot climates. The combination of free cooling and PCM thermal storage reduces charging times by 35 % while enhancing heat transfer. Simulations performed in the open literature suggested that strategic placement of PCMs in lightweight building walls reduces heat flux and overall energy consumption. Despite facing challenges related to scalability, compatibility, reliability, and recycling, PCM solutions demonstrate robust potential. When integrated thoughtfully into building design, PCMs significantly improve thermal performance and energy efficiency. Experimental validations confirm energy reductions ranging from 14 % to 90 %, underscoring the adaptability of passive cooling techniques leveraging PCM thermal storage and heat transfer capabilities across various climates.
AB - Phase Change Materials (PCMs) present cutting-edge technology with substantial promise for advancing sustainable and energy-efficient cooling in buildings. These materials can absorb and release latent heat during phase transitions, facilitating thermal energy storage and temperature regulation. This comprehensive literature review explores various strategies and methods for implementing passive cooling with PCMs in buildings. The integration of PCMs enhances multiple passive cooling approaches, including solar control, ground cooling, ventilation-based heat dissipation, radiative cooling, and thermal mass-based heat modulation. The analysis delves into PCM classifications, encapsulation techniques, melting enthalpies, integration into diverse building envelopes, and performance across different climates. The findings from this comprehensive review indicated that PCM walls introduce a 2-hour delay in heat transfer and mitigate external temperature fluctuations. Windows equipped with PCM panels reduce heat transfer by 66 %. Combining PCMs with nocturnal radiative cooling leads to interior surface temperature reductions exceeding 13 °C. Natural ventilation with PCMs results in notable energy savings of up to 90 % in hot climates. The combination of free cooling and PCM thermal storage reduces charging times by 35 % while enhancing heat transfer. Simulations performed in the open literature suggested that strategic placement of PCMs in lightweight building walls reduces heat flux and overall energy consumption. Despite facing challenges related to scalability, compatibility, reliability, and recycling, PCM solutions demonstrate robust potential. When integrated thoughtfully into building design, PCMs significantly improve thermal performance and energy efficiency. Experimental validations confirm energy reductions ranging from 14 % to 90 %, underscoring the adaptability of passive cooling techniques leveraging PCM thermal storage and heat transfer capabilities across various climates.
UR - http://www.scopus.com/inward/record.url?scp=85190735068&partnerID=8YFLogxK
U2 - 10.1016/j.enbuild.2024.114164
DO - 10.1016/j.enbuild.2024.114164
M3 - Article
AN - SCOPUS:85190735068
SN - 0378-7788
VL - 312
JO - Energy and Buildings
JF - Energy and Buildings
M1 - 114164
ER -