An overview of self-adaptive technologies within virtual reality training

Neil Vaughan, Bodgan Gabrys, Venketesh N. Dubey

    Research output: Contribution to journalReview article

    Abstract

    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training.
    Original languageUndefined
    Pages (from-to)65-87
    Number of pages34
    JournalComputer Science Review
    Volume22
    Early online date20 Sep 2016
    DOIs
    Publication statusPublished - 30 Nov 2016

    Cite this