Application of machine learning models in predicting initial gas production rate from tight gas reservoirs

Ugwumba Chrisangelo Amaechi, Princewill Ikpeka, Johnson Ugwu, Ma Xianlin

Research output: Contribution to journalArticle

160 Downloads (Pure)

Abstract

Tight-gas field development is capital intensive and the amount of data being generated in the process is immense as most platforms are now being digitized. Machine learning tools can be used to analyse these data in order to build patterns between several dependent and independent variables. In this study, two machine learning predictive models (ANN and GLM) were used to determine the expected recovery rate of planned new wells. The study approach is based on the analysis of reservoir rock/fluid properties and selected Well parameters to build decision-based models that can predict initial gas production rate from tight gas formations. Production data were retrieved from 224 wells and used in developing the model. The results obtained from these models were then compared to the actual recorded initial gas production rate from the Wells. Results from the analysis carried out revealed a Mean Square Error (MSE) of 1.57 on GLM model whereas the ANN model gave an MSE of 1.24. Key Performance Index for the ANN model revealed that the reservoir thickness had the highest (36.5%) contribution to the initial gas production rate followed by the flowback rate (29%). The reservoir/fluid properties contribution to the initial gas production rate was 53% while the hydraulic fracture parameters contribution to the initial gas production rate was 47%.
Original languageEnglish
Pages (from-to)29-40
Number of pages12
JournalThe Mining Geology Petroleum Engineering Bulletin
Volume34
Issue number3
DOIs
Publication statusAccepted/In press - 18 Mar 2019

Fingerprint Dive into the research topics of 'Application of machine learning models in predicting initial gas production rate from tight gas reservoirs'. Together they form a unique fingerprint.

  • Cite this