Application of Serine Integrases for Secondary Metabolite Pathway Assembly in Streptomyces

Hong Gao, Gabrielle Taylor, Stephanie Evans, Paul Fogg, Margaret Smith

Research output: Contribution to journalArticle

5 Downloads (Pure)

Abstract

Serine integrases have been shown to be efficient tools for metabolic pathway assembly. To further improve the flexibility and efficiency of pathway engineering via serine integrases, we explored how multiple orthogonally active serine integrases can be applied for use in vitro for the heterologous expression of complex biosynthesis pathways in Streptomyces spp., the major producers of useful bioactive natural products. The results show that multiple orthogonal serine integrases efficiently assemble the genes from a complex biosynthesis pathway in a single in vitro recombination reaction, potentially permitting a versatile combinatorial assembly approach. Furthermore, the assembly strategy also permitted the incorporation of a well-characterised promoter upstream of each gene for expression in a heterologous host. The results demonstrate how site-specific recombination based on orthogonal serine integrases can be applied in Streptomyces spp.
Original languageEnglish
JournalSynthetic and Systems Biotechnology
Volume5
Issue number2
Publication statusPublished - 18 Jun 2020

Fingerprint Dive into the research topics of 'Application of Serine Integrases for Secondary Metabolite Pathway Assembly in Streptomyces'. Together they form a unique fingerprint.

  • Cite this