Abstract
Wave-based control (WBC) offers a relatively novel approach to the challenge of con-trolling flexible mechanisms by treating the interaction between actuator and system as the launch and absorption of mechanical waves. WBC is a robust approach but has been unexplored in active suspension systems to date. This study adapts WBC to a quarter-car suspension model. Having embedded an actuator as the active element of a car suspension, a novel but simple ’force impedance’ adaptation of WBC is introduced and implemented for effective vibration control. Testing with various input signals (pulse, sinusoidal, and random profile) highlights the active system’s significant ride comfort and rapid vibration suppression with zero steady-state error. Compared to two other models—one employing an ideal skyhook strategy and the other a passive sus-pension—the active system utilizing WBC outperforms across many criteria. The active controller achieves over 38% superior ride comfort compared to the skyhook model for a pulse road input. This is accomplished while adhering to WBC principles: relying solely on actuator-interface measurements, simplicity, cost-effectiveness, with no need for detailed system models, extensive sensors, or deep system knowledge.
Original language | English |
---|---|
Article number | 230 |
Number of pages | 16 |
Journal | Actuators |
Volume | 14 |
Issue number | 5 |
DOIs | |
Publication status | Published - 5 May 2025 |