TY - JOUR
T1 - Cu2ZnSnS4, a Fascinating Counter Electrode for TiO2-Free Dye-Sensitized Solar Cells
AU - Roy, Anurag
AU - Sundaram, Senthilarasu
AU - Mallick, Tapas K.
PY - 2021/2/17
Y1 - 2021/2/17
N2 - Since innovation, different dye-sensitized solar cells (DSSCs) have endeavored with additional components to escalate the efficiency, cost-effectiveness and long-term stability. Various approaches have been executed to reduce the amount of costly platinum (Pt) used in DSSCs and/or to explore cheaper alternatives to Pt. In this work, cheaper elements based quaternary chalcogenide alloy; Cu2ZnSnS4 (CZTS) has been projected as a prominent counter electrode (CE) candidate to Pt in DSSCs. The CZTS thin film has been developed by an in-situ synthesis employing a hydrothermal technique and further evaluating various physicochemical characterization. Our results manifest that using the CZTS CE, a power conversion efficiency (PCE) of 4.3 % was exhibited for TiO2 based photoanode. The highest PCE of 6.5 % was achieved for BaSnO3 based photoanode, a promising alternative oxide to TiO2 photoanode. This work further signifies a unique combination of newly developed BaSnO3(BSO)-CZTS DSSCs, could be a promising competitor to TiO2-Pt DSSCs.
AB - Since innovation, different dye-sensitized solar cells (DSSCs) have endeavored with additional components to escalate the efficiency, cost-effectiveness and long-term stability. Various approaches have been executed to reduce the amount of costly platinum (Pt) used in DSSCs and/or to explore cheaper alternatives to Pt. In this work, cheaper elements based quaternary chalcogenide alloy; Cu2ZnSnS4 (CZTS) has been projected as a prominent counter electrode (CE) candidate to Pt in DSSCs. The CZTS thin film has been developed by an in-situ synthesis employing a hydrothermal technique and further evaluating various physicochemical characterization. Our results manifest that using the CZTS CE, a power conversion efficiency (PCE) of 4.3 % was exhibited for TiO2 based photoanode. The highest PCE of 6.5 % was achieved for BaSnO3 based photoanode, a promising alternative oxide to TiO2 photoanode. This work further signifies a unique combination of newly developed BaSnO3(BSO)-CZTS DSSCs, could be a promising competitor to TiO2-Pt DSSCs.
UR - https://publons.com/wos-op/publon/43449551/
U2 - 10.1002/SLCT.202004644
DO - 10.1002/SLCT.202004644
M3 - Article
SN - 2365-6549
VL - 6
SP - 1541
EP - 1547
JO - ChemistrySelect
JF - ChemistrySelect
IS - 7
ER -