TY - JOUR
T1 - Detectives and helpers: Natural products as resources for chemical probes and compound libraries
AU - Parthasarathy, A.
AU - Mantravadi, P.K.
AU - Kalesh, K.
PY - 2020/9/25
Y1 - 2020/9/25
N2 - About 70% of the drugs in use are derived from natural products, either used directly or in chemically modified form. Among all possible small molecules (not greater than 5 kDa), only a few of them are biologically active. Natural product libraries may have a higher rate of finding “hits” than synthetic libraries, even with the use of fewer compounds. This is due to the complementarity between the “chemical space” of small molecules and biological macromolecules such as proteins, DNA and RNA, in addition to the three-dimensional complexity of NPs. Chemical probes are molecules which aid in the elucidation of the biological mechanisms behind the action of drugs or drug-like molecules by binding with macromolecular/cellular interaction partners. Probe development and application have been spurred by advancements in photoaffinity label synthesis, affinity chromatography, activity based protein profiling (ABPP) and instrumental methods such as cellular thermal shift assay (CETSA) and advanced/hyphenated mass spectrometry (MS) techniques, as well as genome sequencing and bioengineering technologies. In this review, we restrict ourselves to a survey of natural products (including peptides/mini-proteins and excluding antibodies), which have been applied largely in the last 5 years for the target identification of drugs/drug-like molecules used in research on infectious diseases, and the description of their mechanisms of action.
AB - About 70% of the drugs in use are derived from natural products, either used directly or in chemically modified form. Among all possible small molecules (not greater than 5 kDa), only a few of them are biologically active. Natural product libraries may have a higher rate of finding “hits” than synthetic libraries, even with the use of fewer compounds. This is due to the complementarity between the “chemical space” of small molecules and biological macromolecules such as proteins, DNA and RNA, in addition to the three-dimensional complexity of NPs. Chemical probes are molecules which aid in the elucidation of the biological mechanisms behind the action of drugs or drug-like molecules by binding with macromolecular/cellular interaction partners. Probe development and application have been spurred by advancements in photoaffinity label synthesis, affinity chromatography, activity based protein profiling (ABPP) and instrumental methods such as cellular thermal shift assay (CETSA) and advanced/hyphenated mass spectrometry (MS) techniques, as well as genome sequencing and bioengineering technologies. In this review, we restrict ourselves to a survey of natural products (including peptides/mini-proteins and excluding antibodies), which have been applied largely in the last 5 years for the target identification of drugs/drug-like molecules used in research on infectious diseases, and the description of their mechanisms of action.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85091684186&partnerID=MN8TOARS
U2 - 10.1016/j.pharmthera.2020.107688
DO - 10.1016/j.pharmthera.2020.107688
M3 - Article
SN - 0163-7258
JO - Pharmacology and Therapeutics
JF - Pharmacology and Therapeutics
M1 - 107688
ER -