Effect of lead, cadmium, and mercury co‐contaminants onbiodegradation in PAH‐polluted soils

Michael Deary, Chinedu Ekumankama, Stephen Cummings

    Research output: Contribution to journalArticlepeer-review

    180 Downloads (Pure)

    Abstract

    Contamination of land by persistent organic pollutants has significant implications for human health and for future development potential. Bioremediation is an effective method for reducing the concentrations of such contaminants to below harmful levels, but the presence of co‐contaminants may hinder this process. Here, we present the results of a 40‐week microcosm study in which the biodegradation of 16 United States Environmental Protection Agency (USEPA) polycyclic aromatic hydrocarbons (PAHs; total: 2,166 mg kg−1) was followed in the presence of 3 different concentrations of cadmium (up to 620 mg kg−1) and lead (up to 782 mg kg−1) in a high organic matter soil. In the absence of metal treatment, 82% of PAHs were removed during the study period. Lead exerts a greater negative effect on total PAH removal than cadmium at low concentrations (approximately 100 mg kg−1) whilst cadmium exerts the greatest effect at higher concentrations (up to −27.7% reduction). Mercury, intended as the abiotic control (approximately 1,150 mg kg−1), exerts the greatest effect overall (−37%). Principal Component Analysis showed that PAH degradation was strongly associated with soil respiration rate, biomass content, and Ecoplate Average Well Colour Development. During the initial phase of the experiment, reduced microbial diversity was associated with increased PAH removal, consistent with literature observations for other organic contaminants, though this association was reversed after Week 12. Degradation of higher molecular weight PAHs showed the greatest sensitivity to the health of the microbial community. The effect of metal treatments on biotic parameters in microcosms without PAH amendment is also presented.
    Original languageEnglish
    Pages (from-to)1583-1594
    Number of pages11
    JournalLand Degradation & Development
    Volume29
    Issue number6
    DOIs
    Publication statusPublished - 6 Apr 2018

    Fingerprint

    Dive into the research topics of 'Effect of lead, cadmium, and mercury co‐contaminants onbiodegradation in PAH‐polluted soils'. Together they form a unique fingerprint.

    Cite this