Abstract
In recent years, a large number of metal foams and porous metals have been developed. Due to the high cost of these materials alternative manufacturing methods for cellular metallic materials are being explored. Crumpled metallic foil meshes, manufactured via die compression techniques, are evolving as a potential alternative method. However, the non-availability of sufficient data on their load response is limiting their uptake. Uniaxial compressive load response of crumpled aluminium foil meshes (CAFMs) of varying densities, forged by open and closed die compression, are studied. A 0.05 mm thick aluminium sheet mesh, manufactured by the expanded metal process is used. X-ray computed micro-tomography is employed to image the CAFM’s internal cellular structure. The stress-strain relation demonstrates that the CAFMs produce identical load response profile irrespective of their relative density. Power law functions ER=17110ρr3.6547 and σY,E=53.092ρr2.2249 define the relationships between real Young’s Modulus ER and effective yield strength, σY,E . The study provides new knowledge on the effect of relative density on the compressive properties of CAFMs which have applications across lightweight structural design.
Original language | English |
---|---|
Article number | 4018 |
Number of pages | 17 |
Journal | Materials |
Volume | 12 |
Issue number | 23 |
DOIs | |
Publication status | Published - 3 Dec 2019 |
Fingerprint
Dive into the research topics of 'Effect of Relative Density on Compressive Load Response of Crumpled Aluminium Foil Mesh'. Together they form a unique fingerprint.Profiles
-
Emeka Amalu
- SCEDT Engineering - Associate Professor (Research)
- Centre for Sustainable Engineering
Person: Academic
-
David Hughes
- SCEDT School Executive Team - Associate Dean (Research & Innovation)
- Centre for Sustainable Engineering
Person: Academic, Senior Academic
-
Tannaz Pak
- SCEDT Engineering - Associate Professor (Research)
- Centre for Sustainable Engineering
Person: Academic