TY - JOUR
T1 - Elimination of Indoor Volatile Organic Compounds on Au/SBA-15 Catalysts
T2 - Insights into the Nature, Size, and Dispersion of the Active Sites and Reaction Mechanism
AU - Iro, Emmanuel
AU - Ariga-Miwa, Hiroko
AU - Sasaki, Takehiko
AU - Asakura, Kiyotaka
AU - Olea, Maria
N1 - Funding Information:
This work was supported by the Joint Usage/Research Program at the Institute of Catalysis, Hokkaido University, Japan.
Publisher Copyright:
© 2022 by the authors.
PY - 2022/11/4
Y1 - 2022/11/4
N2 - Gold catalysts, with different particle sizes ranging from 19 to 556 Å, and supported on SBA-15 mesoporous silica, were prepared by using deposition-precipitation, co-precipitation, and impregnation methods. All samples were characterised by TEM, EXAFS, XPS, XRD, CFR (Continuous Flow Reactor), and TPR. The sample which proved to have the highest activity was characterised by TAP (Temporal Analysis of Products) as well. XPS, wide-angle XRD, EXAFS, and H
2-TPR measurements and data analysis confirmed that gold was present as Au
0 only on all samples. The size of the Au nanoparticle was determined from TEM measurements and confirmed through wide-angle XRD measurements. EXAFS measurements showed that as the Au-Au coordination number decreased the Au-Au bond length decreased. TEM data analysis revealed a dispersion range from 58% (for the smallest particle size) to 2% (for the highest particle size). For Au particles’ sized lower that 60 Å, the Au dispersion was determined using a literature correlation between the dispersion and EXAFS Au-Au coordination number, and was in good agreement with the dispersion data obtained from TEM. The Au dispersion decreased as the particle size increased. CFR experiments validated the relationship between the size of the gold particles in a sample and the sample’s catalytic activity towards acetone oxidation. The lowest temperature for the acetone 100% conversion, i.e., 250 °C, was observed over the reduced catalyst sample with the smallest particle size. This sample not only showed the highest catalytic activity towards acetone conversion, but, at the same time, showed high reaction stability, as catalyst lifetime tests, performed for 25 h in a CFR at 270 °C for the as-synthesised sample, and at 220 °C for the reduced sample, have confirmed. TAP (Temporal Analysis of Products) measurements and data analysis confirmed a weak competitive adsorption of acetone and oxygen over the Au/SBA-15 sample. Based on TAP data, a combination of Eley–Rideal and Langmuir–Hinshelwood mechanisms for acetone complete oxidation was proposed.
AB - Gold catalysts, with different particle sizes ranging from 19 to 556 Å, and supported on SBA-15 mesoporous silica, were prepared by using deposition-precipitation, co-precipitation, and impregnation methods. All samples were characterised by TEM, EXAFS, XPS, XRD, CFR (Continuous Flow Reactor), and TPR. The sample which proved to have the highest activity was characterised by TAP (Temporal Analysis of Products) as well. XPS, wide-angle XRD, EXAFS, and H
2-TPR measurements and data analysis confirmed that gold was present as Au
0 only on all samples. The size of the Au nanoparticle was determined from TEM measurements and confirmed through wide-angle XRD measurements. EXAFS measurements showed that as the Au-Au coordination number decreased the Au-Au bond length decreased. TEM data analysis revealed a dispersion range from 58% (for the smallest particle size) to 2% (for the highest particle size). For Au particles’ sized lower that 60 Å, the Au dispersion was determined using a literature correlation between the dispersion and EXAFS Au-Au coordination number, and was in good agreement with the dispersion data obtained from TEM. The Au dispersion decreased as the particle size increased. CFR experiments validated the relationship between the size of the gold particles in a sample and the sample’s catalytic activity towards acetone oxidation. The lowest temperature for the acetone 100% conversion, i.e., 250 °C, was observed over the reduced catalyst sample with the smallest particle size. This sample not only showed the highest catalytic activity towards acetone conversion, but, at the same time, showed high reaction stability, as catalyst lifetime tests, performed for 25 h in a CFR at 270 °C for the as-synthesised sample, and at 220 °C for the reduced sample, have confirmed. TAP (Temporal Analysis of Products) measurements and data analysis confirmed a weak competitive adsorption of acetone and oxygen over the Au/SBA-15 sample. Based on TAP data, a combination of Eley–Rideal and Langmuir–Hinshelwood mechanisms for acetone complete oxidation was proposed.
UR - http://www.scopus.com/inward/record.url?scp=85141772549&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/82e49a51-0b92-3168-8997-d9148f99c954/
U2 - 10.3390/catal12111365
DO - 10.3390/catal12111365
M3 - Article
SN - 2073-4344
VL - 12
JO - Catalysts
JF - Catalysts
IS - 11
M1 - 1365
ER -