Estimation of Physical Activity Energy Expenditure in Children during Stimulated Free-living Activities: Precision of the ActiHeart Sensor

Research output: Contribution to conferenceAbstractResearchpeer-review

Abstract

Introduction
The validity of the Actiheart – a combined heart rate and movement sensor – for assessing physical activity energy expenditure has been demonstrated in older children during treadmill walking and running and in a limited range of ‘lifestyle’ physical activities (Corder et al., 2005, 2007). Our aim was to evaluate the precision of the Actiheart in younger children performing a wider range of child-relevant simulated free-living activities.
Methods
Thirty-two children (13 girls and 19 boys) aged 9-11 years volunteered to participate. Using regional data on the most commonly performed physical activities in this age group, we devised two routines of six activities ranging from sedentary (e.g. card playing) to vigorous intensity (e.g. soccer). Participants were randomly assigned to one routine, performing each activity for 5 min, with 5 min rest. Indirect calorimetry (Cosmed, K4 b2) was used to estimate resting energy expenditure (short protocol) and criterion physical activity energy expenditure above rest in J/min/kg (Weir, 1949). We derived Actiheart-based estimates from the built-in child ‘group’ equation, and from individual heart rate: energy expenditure relationships observed in a modified 8-min ramped step test. Valid data were available for 21 children (9 girls, 12 boys). Accounting for the hierarchical structure of the data (repeated measures within subjects) we applied a linear mixed model (random slopes and intercepts, unstructured covariance) to derive the within-subjects standard error of the estimate. This statistic provides the typical error in predicting criterion physical activity energy expenditure from either of the Actiheart estimates, at the level of the individual participant.
Results
There was no substantial difference between methods in the mean physical activity energy expenditure. The within-subjects standard error of the estimate from the Actiheart group equation was 53 J/kg/min (90% confidence interval 44 to 63 J/min/kg), versus 49 J/min/kg (42 to 58 J/kg/min) from the Actiheart individual calibration equation.
Discussion
The increase in precision afforded by the simple individual calibration was trivial. The typical within-subject prediction error from both Actiheart equations was around 15% of the mean across all activities (336 J/kg/min). We conclude that this level of precision is adequate for the assessment of free-living physical activity energy expenditure in children.
Original languageEnglish
Publication statusPublished - 2013
EventEuropean College of Sports Science Congress 2013 - Barcelona , Spain
Duration: 26 Jun 201329 Jun 2013
http://sport-science.org/index.php?option=com_content&view=article&id=432&Itemid=124

Conference

ConferenceEuropean College of Sports Science Congress 2013
CountrySpain
Period26/06/1329/06/13
Internet address

Fingerprint

Energy Metabolism
Exercise
Calibration
Heart Rate
Indirect Calorimetry
Soccer
Exercise Test
Running
Walking
Life Style
Linear Models
Age Groups
Confidence Intervals

Cite this

@conference{41243fb38f5c474b94e2944146721e94,
title = "Estimation of Physical Activity Energy Expenditure in Children during Stimulated Free-living Activities: Precision of the ActiHeart Sensor",
abstract = "IntroductionThe validity of the Actiheart – a combined heart rate and movement sensor – for assessing physical activity energy expenditure has been demonstrated in older children during treadmill walking and running and in a limited range of ‘lifestyle’ physical activities (Corder et al., 2005, 2007). Our aim was to evaluate the precision of the Actiheart in younger children performing a wider range of child-relevant simulated free-living activities. MethodsThirty-two children (13 girls and 19 boys) aged 9-11 years volunteered to participate. Using regional data on the most commonly performed physical activities in this age group, we devised two routines of six activities ranging from sedentary (e.g. card playing) to vigorous intensity (e.g. soccer). Participants were randomly assigned to one routine, performing each activity for 5 min, with 5 min rest. Indirect calorimetry (Cosmed, K4 b2) was used to estimate resting energy expenditure (short protocol) and criterion physical activity energy expenditure above rest in J/min/kg (Weir, 1949). We derived Actiheart-based estimates from the built-in child ‘group’ equation, and from individual heart rate: energy expenditure relationships observed in a modified 8-min ramped step test. Valid data were available for 21 children (9 girls, 12 boys). Accounting for the hierarchical structure of the data (repeated measures within subjects) we applied a linear mixed model (random slopes and intercepts, unstructured covariance) to derive the within-subjects standard error of the estimate. This statistic provides the typical error in predicting criterion physical activity energy expenditure from either of the Actiheart estimates, at the level of the individual participant. ResultsThere was no substantial difference between methods in the mean physical activity energy expenditure. The within-subjects standard error of the estimate from the Actiheart group equation was 53 J/kg/min (90{\%} confidence interval 44 to 63 J/min/kg), versus 49 J/min/kg (42 to 58 J/kg/min) from the Actiheart individual calibration equation. DiscussionThe increase in precision afforded by the simple individual calibration was trivial. The typical within-subject prediction error from both Actiheart equations was around 15{\%} of the mean across all activities (336 J/kg/min). We conclude that this level of precision is adequate for the assessment of free-living physical activity energy expenditure in children.",
author = "Alison Innerd",
year = "2013",
language = "English",
note = "European College of Sports Science Congress 2013 ; Conference date: 26-06-2013 Through 29-06-2013",
url = "http://sport-science.org/index.php?option=com_content&view=article&id=432&Itemid=124",

}

Estimation of Physical Activity Energy Expenditure in Children during Stimulated Free-living Activities: Precision of the ActiHeart Sensor. / Innerd, Alison.

2013. Abstract from European College of Sports Science Congress 2013, Spain.

Research output: Contribution to conferenceAbstractResearchpeer-review

TY - CONF

T1 - Estimation of Physical Activity Energy Expenditure in Children during Stimulated Free-living Activities: Precision of the ActiHeart Sensor

AU - Innerd, Alison

PY - 2013

Y1 - 2013

N2 - IntroductionThe validity of the Actiheart – a combined heart rate and movement sensor – for assessing physical activity energy expenditure has been demonstrated in older children during treadmill walking and running and in a limited range of ‘lifestyle’ physical activities (Corder et al., 2005, 2007). Our aim was to evaluate the precision of the Actiheart in younger children performing a wider range of child-relevant simulated free-living activities. MethodsThirty-two children (13 girls and 19 boys) aged 9-11 years volunteered to participate. Using regional data on the most commonly performed physical activities in this age group, we devised two routines of six activities ranging from sedentary (e.g. card playing) to vigorous intensity (e.g. soccer). Participants were randomly assigned to one routine, performing each activity for 5 min, with 5 min rest. Indirect calorimetry (Cosmed, K4 b2) was used to estimate resting energy expenditure (short protocol) and criterion physical activity energy expenditure above rest in J/min/kg (Weir, 1949). We derived Actiheart-based estimates from the built-in child ‘group’ equation, and from individual heart rate: energy expenditure relationships observed in a modified 8-min ramped step test. Valid data were available for 21 children (9 girls, 12 boys). Accounting for the hierarchical structure of the data (repeated measures within subjects) we applied a linear mixed model (random slopes and intercepts, unstructured covariance) to derive the within-subjects standard error of the estimate. This statistic provides the typical error in predicting criterion physical activity energy expenditure from either of the Actiheart estimates, at the level of the individual participant. ResultsThere was no substantial difference between methods in the mean physical activity energy expenditure. The within-subjects standard error of the estimate from the Actiheart group equation was 53 J/kg/min (90% confidence interval 44 to 63 J/min/kg), versus 49 J/min/kg (42 to 58 J/kg/min) from the Actiheart individual calibration equation. DiscussionThe increase in precision afforded by the simple individual calibration was trivial. The typical within-subject prediction error from both Actiheart equations was around 15% of the mean across all activities (336 J/kg/min). We conclude that this level of precision is adequate for the assessment of free-living physical activity energy expenditure in children.

AB - IntroductionThe validity of the Actiheart – a combined heart rate and movement sensor – for assessing physical activity energy expenditure has been demonstrated in older children during treadmill walking and running and in a limited range of ‘lifestyle’ physical activities (Corder et al., 2005, 2007). Our aim was to evaluate the precision of the Actiheart in younger children performing a wider range of child-relevant simulated free-living activities. MethodsThirty-two children (13 girls and 19 boys) aged 9-11 years volunteered to participate. Using regional data on the most commonly performed physical activities in this age group, we devised two routines of six activities ranging from sedentary (e.g. card playing) to vigorous intensity (e.g. soccer). Participants were randomly assigned to one routine, performing each activity for 5 min, with 5 min rest. Indirect calorimetry (Cosmed, K4 b2) was used to estimate resting energy expenditure (short protocol) and criterion physical activity energy expenditure above rest in J/min/kg (Weir, 1949). We derived Actiheart-based estimates from the built-in child ‘group’ equation, and from individual heart rate: energy expenditure relationships observed in a modified 8-min ramped step test. Valid data were available for 21 children (9 girls, 12 boys). Accounting for the hierarchical structure of the data (repeated measures within subjects) we applied a linear mixed model (random slopes and intercepts, unstructured covariance) to derive the within-subjects standard error of the estimate. This statistic provides the typical error in predicting criterion physical activity energy expenditure from either of the Actiheart estimates, at the level of the individual participant. ResultsThere was no substantial difference between methods in the mean physical activity energy expenditure. The within-subjects standard error of the estimate from the Actiheart group equation was 53 J/kg/min (90% confidence interval 44 to 63 J/min/kg), versus 49 J/min/kg (42 to 58 J/kg/min) from the Actiheart individual calibration equation. DiscussionThe increase in precision afforded by the simple individual calibration was trivial. The typical within-subject prediction error from both Actiheart equations was around 15% of the mean across all activities (336 J/kg/min). We conclude that this level of precision is adequate for the assessment of free-living physical activity energy expenditure in children.

M3 - Abstract

ER -