Abstract
The dissolution rates of calcite, aragonite, and ground clam, cockle, and mussel shells were measured at 25 °C as a function of reactive fluid saturation state. All experiments were performed in mixed-flow reactors using a pH-4 HCl inlet solution. Reactive solution pH ranged from 5.1 to 9.8, and the chemical affinity of the dissolving carbonates ranged from 0 to 47 kJ/mol in the experiments. BET surface area-normalized dissolution rates for calcite are of the same order of magnitude as those of aragonite. In contrast, geometric surface area-normalized calcite dissolution rates are ∼30% lower than corresponding aragonite rates.
The dissolution behaviour of the biogenic samples depends on their composition and the surface area used to normalize rates. In all cases, measured BET-normalized dissolution rates of shells are approximately one order of magnitude lower than corresponding mineral dissolution rates. In contrast, measured geometric surface area-normalized bivalve dissolution rates are equal to within uncertainty of those of aragonite or calcite. Geometric surface area-normalized dissolution rates (rgsa) of both aragonite and crushed clam and cockle shells, which are composed of aragonite, can be described within uncertainty using:
where Ω stands for the saturation state of the dissolving carbonate. Similarly, rgsa of calcite can be described using:
where rgsa for mussel shells, which are composed of ∼90% calcite and ∼10% aragonite, are similar to those of calcite, but display a complex variation with chemical affinity due to the presence of two minerals. Consistent with previous studies, rgsa is found to be accurately described as a function of saturation index independent of pH at neutral to basic conditions.
The dissolution behaviour of the biogenic samples depends on their composition and the surface area used to normalize rates. In all cases, measured BET-normalized dissolution rates of shells are approximately one order of magnitude lower than corresponding mineral dissolution rates. In contrast, measured geometric surface area-normalized bivalve dissolution rates are equal to within uncertainty of those of aragonite or calcite. Geometric surface area-normalized dissolution rates (rgsa) of both aragonite and crushed clam and cockle shells, which are composed of aragonite, can be described within uncertainty using:
where Ω stands for the saturation state of the dissolving carbonate. Similarly, rgsa of calcite can be described using:
where rgsa for mussel shells, which are composed of ∼90% calcite and ∼10% aragonite, are similar to those of calcite, but display a complex variation with chemical affinity due to the presence of two minerals. Consistent with previous studies, rgsa is found to be accurately described as a function of saturation index independent of pH at neutral to basic conditions.
Original language | English |
---|---|
Pages (from-to) | 59-77 |
Number of pages | 19 |
Journal | Chemical Geology |
Volume | 216 |
Issue number | 1-2 |
Early online date | 30 Dec 2004 |
DOIs | |
Publication status | Published - 15 Mar 2005 |