Abstract
This paper investigates the flocking control of multi-agent systems with unknown nonlinear dynamics while the virtual leader information is heterogeneous. The uncertain nonlinearity in the virtual leader information is considered, and the weaker constraint on the velocity information measurements is assumed. In addition, a bounded assumption on the unknown nonlinear dynamics is also considered. It is weaker than the Lipschitz condition adopted in the most flocking control methods. To avoid fragmentation, we construct a new potential function based on the penalty idea when the initial network is disconnected. A dynamical control law including a adjust parameter is designed to achieve the stable flocking. It is proven that the velocities of all agents approach to consensus and no collision happens between the mobile agents. Finally, several simulations verify the effectiveness of the new design, and indicate that the proposed method has high convergence and the broader applicability in practical applications with more stringent restrictions.
Original language | English |
---|---|
Pages (from-to) | 2931–2939 |
Journal | International Journal of Control, Automation and Systems |
Volume | 19 |
DOIs | |
Publication status | Published - 27 Jul 2021 |