Abstract
Graphene quantum dots (GQDs) and zinc phthalocyanines interactions in different modes (covalent and non-covalent) are reported in this study. GQDs were covalently attached to the following complexes: zinc tetraamino phthalocyanine (ZnTAPc) via amide coupling, zinc tetracarboxyphenoxy Pc (ZnTCPPc) (π-π interaction) and cationic zinc tetrapyridiloxy Pc (ZnTmPyPc) (ionic interaction). GQDs fluorescence was quenched in the presence of the ZnPc derivatives. The nanoensembles of GQDs-ZnPcs showed stimulated emissions of the ZnPcs. The suggested quenching mechanism is through Förster resonance energy transfer (FRET). These novel nanoensembles hold promise for various optical and luminescence based applications.
Original language | English |
---|---|
Pages (from-to) | 12-25 |
Number of pages | 14 |
Journal | Journal of Photochemistry and Photobiology A: Chemistry |
Volume | 317 |
DOIs | |
Publication status | Published - 28 Nov 2015 |
Externally published | Yes |
Bibliographical note
Funding Information:This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF), South Africa through DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology (UID 62620) as well as Rhodes University/DST Centre for Nanotechnology Innovation, Rhodes University, South Africa.
Publisher Copyright:
© 2015 Elsevier B.V.