TY - JOUR
T1 - From bioethanol exploitation to high grade hydrogen generation
T2 - Steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor
AU - Iulianelli, Adolfo
AU - Palma, Vincenzo
AU - Bagnato, Giuseppe
AU - Ruocco, Concetta
AU - Huang, Yan
AU - Veziroğlu, Nejat T.
AU - Basile, Angelo
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2018/4/30
Y1 - 2018/4/30
N2 - There is a general agreement about the consideration that the fossil fuels are a limited resource and the emission of carbon dioxide and other harmful products are the main cause of the global warming and climate change. The interest for decreasing the fossil fuels dependence and reducing the greenhouse gases emissions represents a top priority. The biomass is a renewable resource useful for biodiesel and bioethanol production. The latter, most plentiful, is currently considered as green ethanol produced from biomass by biological processes. Meanwhile, membrane reactors represent an innovative and intensified technology for the production and the simultaneous recovery of high-grade hydrogen in only one stage. Here, we describe an efficient medium-temperature (T = 400 °C) bioethanol steam reforming process in a thin (∼5 μm of metallic layer) supported Pd-based membrane reactor packed with a not commercial Co(10%)Pt (3%)/CeO2-ZrO2-Al2O3 bi-metallic catalyst at space velocity between 1900 h−1 and 4800 h−1 and reaction pressure between 1.5 and 2.0 bar. A real bioethanol mixture coming from industry is supplied to the membrane reactor for producing high grade hydrogen, reaching 60% of ethanol conversion (versus ∼ 40% of the equivalent conventional reactor) at 400 °C, 2.0 bar and 1900 h−1, meanwhile recovering almost 70% of the hydrogen produced during the bioethanol steam reforming reaction with a purity higher than 99%. This would make the delivery of hydrogen for PEM fuel cells supplying – and hence the use of green bioethanol as a practical hydrogen carrier – feasible.
AB - There is a general agreement about the consideration that the fossil fuels are a limited resource and the emission of carbon dioxide and other harmful products are the main cause of the global warming and climate change. The interest for decreasing the fossil fuels dependence and reducing the greenhouse gases emissions represents a top priority. The biomass is a renewable resource useful for biodiesel and bioethanol production. The latter, most plentiful, is currently considered as green ethanol produced from biomass by biological processes. Meanwhile, membrane reactors represent an innovative and intensified technology for the production and the simultaneous recovery of high-grade hydrogen in only one stage. Here, we describe an efficient medium-temperature (T = 400 °C) bioethanol steam reforming process in a thin (∼5 μm of metallic layer) supported Pd-based membrane reactor packed with a not commercial Co(10%)Pt (3%)/CeO2-ZrO2-Al2O3 bi-metallic catalyst at space velocity between 1900 h−1 and 4800 h−1 and reaction pressure between 1.5 and 2.0 bar. A real bioethanol mixture coming from industry is supplied to the membrane reactor for producing high grade hydrogen, reaching 60% of ethanol conversion (versus ∼ 40% of the equivalent conventional reactor) at 400 °C, 2.0 bar and 1900 h−1, meanwhile recovering almost 70% of the hydrogen produced during the bioethanol steam reforming reaction with a purity higher than 99%. This would make the delivery of hydrogen for PEM fuel cells supplying – and hence the use of green bioethanol as a practical hydrogen carrier – feasible.
UR - http://www.scopus.com/inward/record.url?scp=85032302755&partnerID=8YFLogxK
U2 - 10.1016/j.renene.2017.10.050
DO - 10.1016/j.renene.2017.10.050
M3 - Article
AN - SCOPUS:85032302755
SN - 0960-1481
VL - 119
SP - 834
EP - 843
JO - Renewable Energy
JF - Renewable Energy
ER -