TY - JOUR
T1 - Gas-Liquid Two-Phase Flow Measurement Using Coriolis Flowmeters Incorporating Artificial Neural Network, Support Vector Machine, and Genetic Programming Algorithms
AU - Wang, Lijuan
AU - Liu, Jinyu
AU - Yan, Yong
AU - Wang, Xue
AU - Wang, Tao
PY - 2017/5/31
Y1 - 2017/5/31
N2 - Coriolis flowmeters are well established for the mass flow measurement of single-phase flow with high accuracy. In recent years, attempts have been made to apply Coriolis flowmeters to measure two-phase flow. This paper presents data driven models that are incorporated into Coriolis flowmeters to measure both the liquid mass flowrate and the gas volume fraction of a two-phase flow mixture. Experimental work was conducted on a purpose-built two-phase flow test rig on both horizontal and vertical pipelines for a liquid mass flowrate ranging from 700 to 14500 kg/h and a gas volume fraction between 0% and 30%. Artificial neural network (ANN), support vector machine (SVM), and genetic programming (GP) models are established through training with the experimental data. The performance of backpropagation-ANN (BP-ANN), radial basis function-ANN (RBF-ANN), SVM, and GP models is assessed and compared. Experimental results suggest that the SVM models are superior to the BP-ANN, RBF-ANN, and GP models for two-phase flow measurement in terms of robustness and accuracy. For liquid mass flowrate measurement with the SVM models, 93.49% of the experimental data yield a relative error less than ±1% on the horizontal pipeline, while 96.17% of the results are within ±1% on the vertical installation. The SVM models predict the gas volume fraction with a relative error less than ±10% for 93.10% and 94.25% of the test conditions on the horizontal and vertical installations, respectively.
AB - Coriolis flowmeters are well established for the mass flow measurement of single-phase flow with high accuracy. In recent years, attempts have been made to apply Coriolis flowmeters to measure two-phase flow. This paper presents data driven models that are incorporated into Coriolis flowmeters to measure both the liquid mass flowrate and the gas volume fraction of a two-phase flow mixture. Experimental work was conducted on a purpose-built two-phase flow test rig on both horizontal and vertical pipelines for a liquid mass flowrate ranging from 700 to 14500 kg/h and a gas volume fraction between 0% and 30%. Artificial neural network (ANN), support vector machine (SVM), and genetic programming (GP) models are established through training with the experimental data. The performance of backpropagation-ANN (BP-ANN), radial basis function-ANN (RBF-ANN), SVM, and GP models is assessed and compared. Experimental results suggest that the SVM models are superior to the BP-ANN, RBF-ANN, and GP models for two-phase flow measurement in terms of robustness and accuracy. For liquid mass flowrate measurement with the SVM models, 93.49% of the experimental data yield a relative error less than ±1% on the horizontal pipeline, while 96.17% of the results are within ±1% on the vertical installation. The SVM models predict the gas volume fraction with a relative error less than ±10% for 93.10% and 94.25% of the test conditions on the horizontal and vertical installations, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85007319563&partnerID=8YFLogxK
U2 - 10.1109/TIM.2016.2634630
DO - 10.1109/TIM.2016.2634630
M3 - Article
AN - SCOPUS:85007319563
SN - 0018-9456
VL - 66
SP - 852
EP - 868
JO - IEEE Transactions on Instrumentation and Measurement
JF - IEEE Transactions on Instrumentation and Measurement
IS - 5
M1 - 7790803
ER -