Generating temperature cycle profile from in-situ climatic condition for accurate prediction of thermo-mechanical degradation of c-Si photovoltaic module

Frank K. A. Nyarko, G. Takyi, Emeka H. Amalu, Muyiwa S. Adaramola

Research output: Contribution to journalArticle

64 Downloads (Pure)

Abstract

The use of climate specific temperature-cycling profile is critical to precisely quantifying the degradation rate and accurately determining the service fatigue life of crystalline silicon photovoltaic (c-Si PV) module operating in various climates. A reliable in-situ outdoor weathering database is pivotal to generating the required climate specific temperature cycle profile. This research utilizes high-resolution data obtained at five minutes interval from installed c-Si PV modules to generate a temperature cycle profile that is representative of a test site in sub-Saharan Africa climate. The study collected a three-year data from 2012 to 2014 on weathering of c-Si PV module located at College of Engineering, KNUST Ghana. The data site is on latitude 6° 40″ N and longitude 1° 37″ W at an elevation of 250 m above sea level. Analysis of the data on temperature variation and thermally induced stresses demonstrates that the region has a profile with a ramp rate of 8.996 °C/h, a hot dwell time of 228 min, cold dwell time of 369 min. Maximum and minimum module temperatures of 58.9 °C and 23.7 °C, respectively; and a cycle time of 86400 s. Comparison with the IEC 61215 standards for terrestrial PV modules qualification reveals percentage changes of – 91%, 2180%, 3590%, 747% for the ramp rate, dwell (hot and cold) and cycle times, respectively. The generated in-situ temperature cycle profile predicts to qualify accurately, c-Si PV modules operating in the sub-Saharan African test site. The systematic technique employed in this study to generate the in-situ temperature cycle profile would be useful to the thermo-mechanical reliability research community. In addition, photovoltaic design and manufacturing engineers may harness the information to create climate specific robust c-Si PV module.
Original languageEnglish
Number of pages13
JournalEngineering Science and Technology, an International Journal
Early online date26 Dec 2018
DOIs
Publication statusE-pub ahead of print - 26 Dec 2018

Fingerprint

Silicon
Degradation
Crystalline materials
Temperature
Weathering
Sea level
Fatigue of materials
Engineers

Cite this

@article{797168f963074c92926422a92e9cc409,
title = "Generating temperature cycle profile from in-situ climatic condition for accurate prediction of thermo-mechanical degradation of c-Si photovoltaic module",
abstract = "The use of climate specific temperature-cycling profile is critical to precisely quantifying the degradation rate and accurately determining the service fatigue life of crystalline silicon photovoltaic (c-Si PV) module operating in various climates. A reliable in-situ outdoor weathering database is pivotal to generating the required climate specific temperature cycle profile. This research utilizes high-resolution data obtained at five minutes interval from installed c-Si PV modules to generate a temperature cycle profile that is representative of a test site in sub-Saharan Africa climate. The study collected a three-year data from 2012 to 2014 on weathering of c-Si PV module located at College of Engineering, KNUST Ghana. The data site is on latitude 6° 40″ N and longitude 1° 37″ W at an elevation of 250 m above sea level. Analysis of the data on temperature variation and thermally induced stresses demonstrates that the region has a profile with a ramp rate of 8.996 °C/h, a hot dwell time of 228 min, cold dwell time of 369 min. Maximum and minimum module temperatures of 58.9 °C and 23.7 °C, respectively; and a cycle time of 86400 s. Comparison with the IEC 61215 standards for terrestrial PV modules qualification reveals percentage changes of – 91{\%}, 2180{\%}, 3590{\%}, 747{\%} for the ramp rate, dwell (hot and cold) and cycle times, respectively. The generated in-situ temperature cycle profile predicts to qualify accurately, c-Si PV modules operating in the sub-Saharan African test site. The systematic technique employed in this study to generate the in-situ temperature cycle profile would be useful to the thermo-mechanical reliability research community. In addition, photovoltaic design and manufacturing engineers may harness the information to create climate specific robust c-Si PV module.",
author = "Nyarko, {Frank K. A.} and G. Takyi and Amalu, {Emeka H.} and Adaramola, {Muyiwa S.}",
year = "2018",
month = "12",
day = "26",
doi = "10.1016/j.jestch.2018.12.007",
language = "English",
journal = "Engineering Science and Technology, an International Journal",
issn = "2215-0986",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Generating temperature cycle profile from in-situ climatic condition for accurate prediction of thermo-mechanical degradation of c-Si photovoltaic module

AU - Nyarko, Frank K. A.

AU - Takyi, G.

AU - Amalu, Emeka H.

AU - Adaramola, Muyiwa S.

PY - 2018/12/26

Y1 - 2018/12/26

N2 - The use of climate specific temperature-cycling profile is critical to precisely quantifying the degradation rate and accurately determining the service fatigue life of crystalline silicon photovoltaic (c-Si PV) module operating in various climates. A reliable in-situ outdoor weathering database is pivotal to generating the required climate specific temperature cycle profile. This research utilizes high-resolution data obtained at five minutes interval from installed c-Si PV modules to generate a temperature cycle profile that is representative of a test site in sub-Saharan Africa climate. The study collected a three-year data from 2012 to 2014 on weathering of c-Si PV module located at College of Engineering, KNUST Ghana. The data site is on latitude 6° 40″ N and longitude 1° 37″ W at an elevation of 250 m above sea level. Analysis of the data on temperature variation and thermally induced stresses demonstrates that the region has a profile with a ramp rate of 8.996 °C/h, a hot dwell time of 228 min, cold dwell time of 369 min. Maximum and minimum module temperatures of 58.9 °C and 23.7 °C, respectively; and a cycle time of 86400 s. Comparison with the IEC 61215 standards for terrestrial PV modules qualification reveals percentage changes of – 91%, 2180%, 3590%, 747% for the ramp rate, dwell (hot and cold) and cycle times, respectively. The generated in-situ temperature cycle profile predicts to qualify accurately, c-Si PV modules operating in the sub-Saharan African test site. The systematic technique employed in this study to generate the in-situ temperature cycle profile would be useful to the thermo-mechanical reliability research community. In addition, photovoltaic design and manufacturing engineers may harness the information to create climate specific robust c-Si PV module.

AB - The use of climate specific temperature-cycling profile is critical to precisely quantifying the degradation rate and accurately determining the service fatigue life of crystalline silicon photovoltaic (c-Si PV) module operating in various climates. A reliable in-situ outdoor weathering database is pivotal to generating the required climate specific temperature cycle profile. This research utilizes high-resolution data obtained at five minutes interval from installed c-Si PV modules to generate a temperature cycle profile that is representative of a test site in sub-Saharan Africa climate. The study collected a three-year data from 2012 to 2014 on weathering of c-Si PV module located at College of Engineering, KNUST Ghana. The data site is on latitude 6° 40″ N and longitude 1° 37″ W at an elevation of 250 m above sea level. Analysis of the data on temperature variation and thermally induced stresses demonstrates that the region has a profile with a ramp rate of 8.996 °C/h, a hot dwell time of 228 min, cold dwell time of 369 min. Maximum and minimum module temperatures of 58.9 °C and 23.7 °C, respectively; and a cycle time of 86400 s. Comparison with the IEC 61215 standards for terrestrial PV modules qualification reveals percentage changes of – 91%, 2180%, 3590%, 747% for the ramp rate, dwell (hot and cold) and cycle times, respectively. The generated in-situ temperature cycle profile predicts to qualify accurately, c-Si PV modules operating in the sub-Saharan African test site. The systematic technique employed in this study to generate the in-situ temperature cycle profile would be useful to the thermo-mechanical reliability research community. In addition, photovoltaic design and manufacturing engineers may harness the information to create climate specific robust c-Si PV module.

U2 - 10.1016/j.jestch.2018.12.007

DO - 10.1016/j.jestch.2018.12.007

M3 - Article

JO - Engineering Science and Technology, an International Journal

JF - Engineering Science and Technology, an International Journal

SN - 2215-0986

ER -