Abstract
Aims
The main objective of this study was to produce erythronolide B (EB) and 3-O-α-mycarosylerythronolide B (MEB) in Streptomyces coelicolor and enhance the MEB production by expressing the glucose-1-phosphate thymidylyltransferase (RfbA).
Methods and results
We expressed eryF and eryB genes (eryBII, eryBIII, eryBIV, eryBV, eryBVI, and eryBVII) to produce EB and MEB. The expression was confirmed by quantitative real-time polymerase chain reaction. Furthermore, the MEB’s production was improved by more than 100-fold by expressing an enzyme, RfbA, which is absent from the erythromycin gene cluster, to promote the biosynthesis of TDP-L-mycarose. We discuss the feasibility of alternative Streptomyces species for erythromycin production based on the presence or absence of RfbA.
Conclusions
The RbfA enzyme from Saccharopolyspora erythraea was expressed in S. coelicolor M1152 along with the MEB biosynthesis pathway, resulting in a large increase in MEB production (>100-fold).
The main objective of this study was to produce erythronolide B (EB) and 3-O-α-mycarosylerythronolide B (MEB) in Streptomyces coelicolor and enhance the MEB production by expressing the glucose-1-phosphate thymidylyltransferase (RfbA).
Methods and results
We expressed eryF and eryB genes (eryBII, eryBIII, eryBIV, eryBV, eryBVI, and eryBVII) to produce EB and MEB. The expression was confirmed by quantitative real-time polymerase chain reaction. Furthermore, the MEB’s production was improved by more than 100-fold by expressing an enzyme, RfbA, which is absent from the erythromycin gene cluster, to promote the biosynthesis of TDP-L-mycarose. We discuss the feasibility of alternative Streptomyces species for erythromycin production based on the presence or absence of RfbA.
Conclusions
The RbfA enzyme from Saccharopolyspora erythraea was expressed in S. coelicolor M1152 along with the MEB biosynthesis pathway, resulting in a large increase in MEB production (>100-fold).
Original language | English |
---|---|
Article number | lxae291 |
Number of pages | 8 |
Journal | Journal of Applied Microbiology |
Volume | 135 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2 Dec 2024 |