TY - JOUR
T1 - Glycerol-Free Biodiesel via Catalytic Interesterification
T2 - A Pathway to a NetZero Biodiesel Industry
AU - Youssef, Omar
AU - Khaled, Esraa
AU - Aboelazayem, Omar
AU - Farrag, Nessren
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/6/12
Y1 - 2024/6/12
N2 - Conventional biodiesel manufacturing uses alcohol as an acyl acceptor, resulting in glycerol as a side product. The increased demand for biodiesel has led to the production of a substantial surplus of glycerol, exceeding the market need. Consequently, glycerol is now being regarded as a byproduct, and in some cases, even as waste. The present study aims to suggest an economically viable and ecologically friendly approach for maintaining the viability of the biodiesel sector. This involves generating an alternative byproduct of higher value, rather than glycerol. Triacetin is produced through the interesterification of triglycerides with methyl acetate, and is a beneficial ingredient to biodiesel, reducing the need for extensive product separation. The primary objective of this research is to improve the interesterification reaction by optimising process parameters to maximise biodiesel production while using sulphuric acid as an economically viable catalyst. The study utilised the Box–Behnken design (BBD) to investigate the influence of various process variables on biodiesel yield, such as reaction time, methyl acetate to oil molar ratio, and catalyst concentration. An optimisation study using Response Surface Methodology (RSM) focused on key process reaction parameters, including the methyl acetate to oil (MA:O) molar ratio, catalyst concentration, and residence time. The best conditions produced a biodiesel blend with a 142% yield at a 12:1 MA:O molar ratio, with 0.1 wt% of catalyst loading within 1.7 h. The established technique is deemed to be undeniably effective, resulting in an efficient biodiesel production process.
AB - Conventional biodiesel manufacturing uses alcohol as an acyl acceptor, resulting in glycerol as a side product. The increased demand for biodiesel has led to the production of a substantial surplus of glycerol, exceeding the market need. Consequently, glycerol is now being regarded as a byproduct, and in some cases, even as waste. The present study aims to suggest an economically viable and ecologically friendly approach for maintaining the viability of the biodiesel sector. This involves generating an alternative byproduct of higher value, rather than glycerol. Triacetin is produced through the interesterification of triglycerides with methyl acetate, and is a beneficial ingredient to biodiesel, reducing the need for extensive product separation. The primary objective of this research is to improve the interesterification reaction by optimising process parameters to maximise biodiesel production while using sulphuric acid as an economically viable catalyst. The study utilised the Box–Behnken design (BBD) to investigate the influence of various process variables on biodiesel yield, such as reaction time, methyl acetate to oil molar ratio, and catalyst concentration. An optimisation study using Response Surface Methodology (RSM) focused on key process reaction parameters, including the methyl acetate to oil (MA:O) molar ratio, catalyst concentration, and residence time. The best conditions produced a biodiesel blend with a 142% yield at a 12:1 MA:O molar ratio, with 0.1 wt% of catalyst loading within 1.7 h. The established technique is deemed to be undeniably effective, resulting in an efficient biodiesel production process.
UR - http://www.scopus.com/inward/record.url?scp=85197220545&partnerID=8YFLogxK
U2 - 10.3390/su16124994
DO - 10.3390/su16124994
M3 - Article
AN - SCOPUS:85197220545
SN - 2071-1050
VL - 16
JO - Sustainability (Switzerland)
JF - Sustainability (Switzerland)
IS - 12
M1 - 4994
ER -