TY - JOUR
T1 - Green Communication for Next-Generation Wireless Systems
T2 - Optimization Strategies, Challenges, Solutions, and Future Aspects
AU - Rathore, Rajkumar Singh
AU - Sangwan, Suman
AU - Kaiwartya, Omprakash
AU - Aggarwal, Geetika
N1 - Publisher Copyright:
© 2021 Rajkumar Singh Rathore et al.
PY - 2021/5/25
Y1 - 2021/5/25
N2 - Wireless sensor networks (WSNs) have emerged as a backbone technology for the wireless communication era. The demand for WSN is rapidly increasing due to their major role in various applications with a wider deployment and omnipresent nature. The WSN is rapidly integrated into a large number of applications such as industrial, security, monitoring, tracking, and applications in home automation. The widespread use in many different areas attracts research interest in WSNs. Therefore, researchers are taking initiatives in exploring innovation day by day particularly towards the Internet of Things (IoT). But, WSN is having lots of challenging issues that need to be addressed, and the inherent characteristics of WSN severely affect the performance. Energy constraints are one of the primary issues that require urgent attention from the research community. Optimal energy optimization strategies are needed to counter the issue of energy constraints. Although one of the most appropriate schemes for handling energy constraints issues is the appropriate energy harvesting technique, the optimal energy optimization strategies should be coupled together for effectively utilizing the harvested energy. In this high-level systematic and taxonomical survey, we have organized the energy optimization strategies for EH-WSNs into eleven factors, namely, radio optimization schemes, optimizing the energy harvesting process, data reduction schemes, schemes based on cross-layer optimization, schemes based on cross-layer optimization, sleep/wake-up policies, schemes based on load balancing, schemes based on optimization of power requirement, optimization of communication mechanism, schemes based on optimization of battery operations, mobility-based schemes, and finally energy balancing schemes. We have also prepared the summarized view of various protocols/algorithms with their remarkable details. This systematic and taxonomy survey also provides a progressive detailed overview and classification of various optimization challenges for the EH-WSNs that require attention from the researcher followed by a survey of corresponding solutions for corresponding optimization issues. Further, this systematic and taxonomical survey also provides a deep analysis of various emerging energy harvesting technologies in the last twenty years of the era.
AB - Wireless sensor networks (WSNs) have emerged as a backbone technology for the wireless communication era. The demand for WSN is rapidly increasing due to their major role in various applications with a wider deployment and omnipresent nature. The WSN is rapidly integrated into a large number of applications such as industrial, security, monitoring, tracking, and applications in home automation. The widespread use in many different areas attracts research interest in WSNs. Therefore, researchers are taking initiatives in exploring innovation day by day particularly towards the Internet of Things (IoT). But, WSN is having lots of challenging issues that need to be addressed, and the inherent characteristics of WSN severely affect the performance. Energy constraints are one of the primary issues that require urgent attention from the research community. Optimal energy optimization strategies are needed to counter the issue of energy constraints. Although one of the most appropriate schemes for handling energy constraints issues is the appropriate energy harvesting technique, the optimal energy optimization strategies should be coupled together for effectively utilizing the harvested energy. In this high-level systematic and taxonomical survey, we have organized the energy optimization strategies for EH-WSNs into eleven factors, namely, radio optimization schemes, optimizing the energy harvesting process, data reduction schemes, schemes based on cross-layer optimization, schemes based on cross-layer optimization, sleep/wake-up policies, schemes based on load balancing, schemes based on optimization of power requirement, optimization of communication mechanism, schemes based on optimization of battery operations, mobility-based schemes, and finally energy balancing schemes. We have also prepared the summarized view of various protocols/algorithms with their remarkable details. This systematic and taxonomy survey also provides a progressive detailed overview and classification of various optimization challenges for the EH-WSNs that require attention from the researcher followed by a survey of corresponding solutions for corresponding optimization issues. Further, this systematic and taxonomical survey also provides a deep analysis of various emerging energy harvesting technologies in the last twenty years of the era.
UR - http://www.scopus.com/inward/record.url?scp=85107666658&partnerID=8YFLogxK
U2 - 10.1155/2021/5528584
DO - 10.1155/2021/5528584
M3 - Review article
AN - SCOPUS:85107666658
SN - 1530-8669
VL - 2021
JO - Wireless Communications and Mobile Computing
JF - Wireless Communications and Mobile Computing
M1 - 5528584
ER -