TY - JOUR
T1 - Healthcare Facilities as Potential Reservoirs of Antimicrobial Resistant Klebsiella pneumoniae
T2 - An Emerging Concern to Public Health in Bangladesh
AU - Mahmud, Zahid Hayat
AU - Uddin, Salman Zahir
AU - Moniruzzaman, M.
AU - Ali, Sobur
AU - Hossain, Monir
AU - Islam, Md Tamzid
AU - Costa, Dorin Teresa D.
AU - Islam, Mohammad Rafiqul
AU - Hassan, Md Zakiul
AU - Ong, Li Ann
AU - Moore, Catrin E.
AU - Charles, Katrina J.
AU - Mondal, Dinesh
AU - Lopes, Bruno Silvester
AU - Parveen, Shahana
N1 - Funding Information:
This research protocol was funded by US Centers for Disease Control and Prevention (CDC), grant number CoAg#U01GH001207. icddr,b acknowledges with gratitude the commitment of US CDC to its research efforts. icddr,b is also grateful to the Governments of Bangladesh, Canada, Sweden, and the UK for providing unrestricted support.
Publisher Copyright:
© 2022 by the authors.
PY - 2022/9/7
Y1 - 2022/9/7
N2 - The emergence of virulent extended spectrum β-lactamase producing Klebsiella pneumoniae (ESBL-KP) including carbapenem-resistant Klebsiella pneumoniae (CRKP) in hospital-acquired infections has resulted in significant morbidity and mortality worldwide. We investigated the antibiotic resistance and virulence factors associated with ESBL-KP and CRKP in tertiary care hospitals in Bangladesh and explored their ability to form biofilm. A total of 67 ESBL-KP were isolated from 285 Klebsiella pneumoniae isolates from environmental and patient samples from January 2019 to April 2019. For ESBL-KP isolates, molecular typing was carried out using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR), antibiotic susceptibility testing, PCR for virulence and drug-resistant genes, and biofilm assays were also performed. All 67 isolates were multidrug-resistant (MDR) to different antibiotics at high levels and 42 isolates were also carbapenem-resistant. The most common β-lactam resistance gene was blaCTX-M-1 (91%), followed by blaTEM (76.1%), blaSHV (68.7%), blaOXA-1 (29.9%), blaGES (14.9%), blaCTX-M-9 (11.9%), and blaCTX-M-2 (4.5%). The carbapenemase genes blaKPC (55.2%), blaIMP (28.4%), blaVIM (14.9%), blaNDM-1 (13.4%), and blaOXA-48 (10.4%) and virulence-associated genes such as fimH (71.6%), ugeF (58.2%), wabG (56.7%), ureA (47.8%) and kfuBC (28.4%) were also detected. About 96.2% of the environmental and 100% of the patient isolates were able to form biofilms. ERIC-PCR-based genotyping and hierarchical clustering of K. pneumoniae isolates revealed an association between environmental and patient samples, indicating clonal association with possible transmission of antimicrobial resistance genes. Our findings can help in improving patient care and infection control, and the development of public health policies related to hospital-acquired infections.
AB - The emergence of virulent extended spectrum β-lactamase producing Klebsiella pneumoniae (ESBL-KP) including carbapenem-resistant Klebsiella pneumoniae (CRKP) in hospital-acquired infections has resulted in significant morbidity and mortality worldwide. We investigated the antibiotic resistance and virulence factors associated with ESBL-KP and CRKP in tertiary care hospitals in Bangladesh and explored their ability to form biofilm. A total of 67 ESBL-KP were isolated from 285 Klebsiella pneumoniae isolates from environmental and patient samples from January 2019 to April 2019. For ESBL-KP isolates, molecular typing was carried out using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR), antibiotic susceptibility testing, PCR for virulence and drug-resistant genes, and biofilm assays were also performed. All 67 isolates were multidrug-resistant (MDR) to different antibiotics at high levels and 42 isolates were also carbapenem-resistant. The most common β-lactam resistance gene was blaCTX-M-1 (91%), followed by blaTEM (76.1%), blaSHV (68.7%), blaOXA-1 (29.9%), blaGES (14.9%), blaCTX-M-9 (11.9%), and blaCTX-M-2 (4.5%). The carbapenemase genes blaKPC (55.2%), blaIMP (28.4%), blaVIM (14.9%), blaNDM-1 (13.4%), and blaOXA-48 (10.4%) and virulence-associated genes such as fimH (71.6%), ugeF (58.2%), wabG (56.7%), ureA (47.8%) and kfuBC (28.4%) were also detected. About 96.2% of the environmental and 100% of the patient isolates were able to form biofilms. ERIC-PCR-based genotyping and hierarchical clustering of K. pneumoniae isolates revealed an association between environmental and patient samples, indicating clonal association with possible transmission of antimicrobial resistance genes. Our findings can help in improving patient care and infection control, and the development of public health policies related to hospital-acquired infections.
UR - http://www.scopus.com/inward/record.url?scp=85138669641&partnerID=8YFLogxK
U2 - 10.3390/ph15091116
DO - 10.3390/ph15091116
M3 - Article
C2 - 36145337
AN - SCOPUS:85138669641
SN - 1424-8247
VL - 15
JO - Pharmaceuticals
JF - Pharmaceuticals
IS - 9
M1 - 1116
ER -