Abstract
We propose an agent-based artificial stock market to investigate the influences of social networks on financial markets. It contains four types of traders whose information sets and trading strategies are different. The application of artificial intelligence is employed in informed and uninformed traders’behaviour and heterogeneity. When information is exogenous, social networks result in higher volatility and trading volume and lower price distortion and bid-ask spread. When information is endogenous, the influences are reversed. The reason is that social networks harm information production after traders tend to rely on information from communication, instead of spending a cost on it.
Original language | English |
---|---|
Number of pages | 23 |
Journal | Enterprise Information Systems |
Early online date | 1 Dec 2021 |
DOIs | |
Publication status | E-pub ahead of print - 1 Dec 2021 |
Bibliographical note
Funding Information:The authors would like to thank Professor Victor Chang for the research support from VC Research (VCR 0000146).
Publisher Copyright:
© 2021 Informa UK Limited, trading as Taylor & Francis Group.