Abstract
This research presents an abnormal beat detection scheme from lead II Electrocardiogram (ECG) signals along with some improvements on feature extraction. A set of 16 features representing positions, durations, amplitudes and shapes of P, Q, R, S and T waves is proposed in this work for heart beat classification. These features carry important medical information for normal and abnormal beat detection. Diverse classifiers are employed for abnormality detection, including K-Nearest Neighbor, Decision Tree, Artificial Neural Network, Naive Bayesian Classifier, Random Forest, and Support Vector Machine along with some ensemble classifiers such as AdaBoostM1 and Bagging. We have evaluated the proposed system on raw one lead signals extracted from MIT-BIH Arrhythmia, QT and European ST-T databases in the Physionet databank. The experiments using this new set of 16 features achieve better performance for the three test databases than our previous system using a subset of these features.
Original language | English |
---|---|
Title of host publication | 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2016 |
Editors | Jiayi Du, Chubo Liu, Kenli Li, Lipo Wang, Zhao Tong, Maozhen Li, Ning Xiong |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1402-1406 |
Number of pages | 5 |
ISBN (Electronic) | 9781509040933 |
DOIs | |
Publication status | Published - 24 Oct 2016 |
Event | 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery - Changsha, China Duration: 13 Aug 2016 → 15 Aug 2016 |
Conference
Conference | 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery |
---|---|
Abbreviated title | ICNC-FSKD 2016 |
Country/Territory | China |
City | Changsha |
Period | 13/08/16 → 15/08/16 |