Intermittent exercise abolishes the diurnal variation in endothelial-dependent flow-mediated dilation in humans

Helen Jones, Daniel J. Green, Keith George, Greg Atkinson

Research output: Contribution to journalArticleResearchpeer-review

42 Citations (Scopus)

Abstract

It is currently unclear to what extent diurnal variation and exercise effect endothelium-dependent nitric oxide (NO)-mediated vasodilation. Therefore, we measured brachial artery flow-mediated dilation (FMD) in 10 males (mean age = 28 yr, SD = 7), before and after a bout of intermittent cycling at 70% peak oxygen uptake on separate days beginning either at 0800 or 1600. Edge-detection and wall-tracking software was used to measure changes in arterial diameter, while shear rate (SR) was assessed using simultaneously derived blood flow velocity and B-mode diameter data. The FMD data were analyzed before and after normalization for SR with repeated-measures models. Before exercise, mean ± SD FMD was 7 ± 3% in the morning compared with 11 ± 6% in the afternoon (P = 0.01). This diurnal variation persisted after data were normalized for SR, which was found to be unaffected by time of day (P = 0.33). Postexercise SR was higher than at baseline (pre-exercise) (P = 0.01) to a similar extent at both times of day. FMD was unaffected by exercise in the morning (P = 0.96) but decreased by 4 ± 3% following exercise in the afternoon (P = 0.01) so that postexercise measurements did not differ between times of day. These data indicate that endothelium-dependent FMD is lower in the morning, and this finding was not altered by normalization of FMD for diurnal variation in SR. This infers a reduced function of the intrinsic endothelial NO-vasodilator system in the morning. We also report, for the first time, that a bout of intermittent exercise abolishes this diurnal variation in endothelium-dependent FMD.

Original languageEnglish
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume298
Issue number2
DOIs
Publication statusPublished - 1 Feb 2010

Fingerprint

Dilatation
Endothelium
Nitric Oxide
Brachial Artery
Blood Flow Velocity
Vasodilator Agents
Vasodilation
Software
Oxygen

Cite this

@article{0f78d621968f4241a724995b6944208f,
title = "Intermittent exercise abolishes the diurnal variation in endothelial-dependent flow-mediated dilation in humans",
abstract = "It is currently unclear to what extent diurnal variation and exercise effect endothelium-dependent nitric oxide (NO)-mediated vasodilation. Therefore, we measured brachial artery flow-mediated dilation (FMD) in 10 males (mean age = 28 yr, SD = 7), before and after a bout of intermittent cycling at 70{\%} peak oxygen uptake on separate days beginning either at 0800 or 1600. Edge-detection and wall-tracking software was used to measure changes in arterial diameter, while shear rate (SR) was assessed using simultaneously derived blood flow velocity and B-mode diameter data. The FMD data were analyzed before and after normalization for SR with repeated-measures models. Before exercise, mean ± SD FMD was 7 ± 3{\%} in the morning compared with 11 ± 6{\%} in the afternoon (P = 0.01). This diurnal variation persisted after data were normalized for SR, which was found to be unaffected by time of day (P = 0.33). Postexercise SR was higher than at baseline (pre-exercise) (P = 0.01) to a similar extent at both times of day. FMD was unaffected by exercise in the morning (P = 0.96) but decreased by 4 ± 3{\%} following exercise in the afternoon (P = 0.01) so that postexercise measurements did not differ between times of day. These data indicate that endothelium-dependent FMD is lower in the morning, and this finding was not altered by normalization of FMD for diurnal variation in SR. This infers a reduced function of the intrinsic endothelial NO-vasodilator system in the morning. We also report, for the first time, that a bout of intermittent exercise abolishes this diurnal variation in endothelium-dependent FMD.",
author = "Helen Jones and Green, {Daniel J.} and Keith George and Greg Atkinson",
year = "2010",
month = "2",
day = "1",
doi = "10.1152/ajpregu.00442.2009",
language = "English",
volume = "298",
journal = "American Journal of Physiology - Regulatory Integrative and Comparative Physiology",
issn = "0363-6119",
publisher = "American Physiological Society",
number = "2",

}

Intermittent exercise abolishes the diurnal variation in endothelial-dependent flow-mediated dilation in humans. / Jones, Helen; Green, Daniel J.; George, Keith; Atkinson, Greg.

In: American Journal of Physiology - Regulatory Integrative and Comparative Physiology, Vol. 298, No. 2, 01.02.2010.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Intermittent exercise abolishes the diurnal variation in endothelial-dependent flow-mediated dilation in humans

AU - Jones, Helen

AU - Green, Daniel J.

AU - George, Keith

AU - Atkinson, Greg

PY - 2010/2/1

Y1 - 2010/2/1

N2 - It is currently unclear to what extent diurnal variation and exercise effect endothelium-dependent nitric oxide (NO)-mediated vasodilation. Therefore, we measured brachial artery flow-mediated dilation (FMD) in 10 males (mean age = 28 yr, SD = 7), before and after a bout of intermittent cycling at 70% peak oxygen uptake on separate days beginning either at 0800 or 1600. Edge-detection and wall-tracking software was used to measure changes in arterial diameter, while shear rate (SR) was assessed using simultaneously derived blood flow velocity and B-mode diameter data. The FMD data were analyzed before and after normalization for SR with repeated-measures models. Before exercise, mean ± SD FMD was 7 ± 3% in the morning compared with 11 ± 6% in the afternoon (P = 0.01). This diurnal variation persisted after data were normalized for SR, which was found to be unaffected by time of day (P = 0.33). Postexercise SR was higher than at baseline (pre-exercise) (P = 0.01) to a similar extent at both times of day. FMD was unaffected by exercise in the morning (P = 0.96) but decreased by 4 ± 3% following exercise in the afternoon (P = 0.01) so that postexercise measurements did not differ between times of day. These data indicate that endothelium-dependent FMD is lower in the morning, and this finding was not altered by normalization of FMD for diurnal variation in SR. This infers a reduced function of the intrinsic endothelial NO-vasodilator system in the morning. We also report, for the first time, that a bout of intermittent exercise abolishes this diurnal variation in endothelium-dependent FMD.

AB - It is currently unclear to what extent diurnal variation and exercise effect endothelium-dependent nitric oxide (NO)-mediated vasodilation. Therefore, we measured brachial artery flow-mediated dilation (FMD) in 10 males (mean age = 28 yr, SD = 7), before and after a bout of intermittent cycling at 70% peak oxygen uptake on separate days beginning either at 0800 or 1600. Edge-detection and wall-tracking software was used to measure changes in arterial diameter, while shear rate (SR) was assessed using simultaneously derived blood flow velocity and B-mode diameter data. The FMD data were analyzed before and after normalization for SR with repeated-measures models. Before exercise, mean ± SD FMD was 7 ± 3% in the morning compared with 11 ± 6% in the afternoon (P = 0.01). This diurnal variation persisted after data were normalized for SR, which was found to be unaffected by time of day (P = 0.33). Postexercise SR was higher than at baseline (pre-exercise) (P = 0.01) to a similar extent at both times of day. FMD was unaffected by exercise in the morning (P = 0.96) but decreased by 4 ± 3% following exercise in the afternoon (P = 0.01) so that postexercise measurements did not differ between times of day. These data indicate that endothelium-dependent FMD is lower in the morning, and this finding was not altered by normalization of FMD for diurnal variation in SR. This infers a reduced function of the intrinsic endothelial NO-vasodilator system in the morning. We also report, for the first time, that a bout of intermittent exercise abolishes this diurnal variation in endothelium-dependent FMD.

UR - http://www.scopus.com/inward/record.url?scp=75449084314&partnerID=8YFLogxK

U2 - 10.1152/ajpregu.00442.2009

DO - 10.1152/ajpregu.00442.2009

M3 - Article

VL - 298

JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology

JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology

SN - 0363-6119

IS - 2

ER -