Abstract
The global dispersion of hemoglobin variants through population migration has precipitated a need for their identification. A particularly effective mass spectrometry (MS)-based procedure involves analysis of the intact globin chains in diluted blood to detect the variant through mass anomalies, followed by location of the variant amino acid residue by direct analysis of the enzymatically digested globins. Here we demonstrate the use of ion mobility separation in combination with this MSprocedure to reduce mass spectral complexity. In one example, the doubly charged tryptic peptide from a low abundance variant (4%) occurred at the same m/z value as a singly and a doubly charged interfering ion. In another example, the singly charged tryptic peptide from an α-chain variant (26%) occurred at the same m/z value as a doubly charged interfering ion. Ion mobility was used to separate the variant ions from the interfering ions, thus allowing the variant peptides to be observed and sequenced by tandem mass spectrometry.
Original language | English |
---|---|
Pages (from-to) | 3179-3186 |
Number of pages | 8 |
Journal | Rapid Communications in Mass Spectrometry |
Volume | 22 |
Issue number | 20 |
DOIs | |
Publication status | Published - 30 Oct 2008 |