Machine learning for Autopsy reports Forensic using Text Classification Techniques

Muhammad Rehman Shahid, Asim Munir, Layeba lfraheem, Hamza Aldabbas, Abdul Wadood, Tariq Alwada'n

Research output: Contribution to conferencePaperpeer-review

Abstract

A forensic autopsy is a surgical process in which experts collect a deceased body's internal and external information. These death certificates are the source of timely warnings of an increase in disease activity. It's only helpful if accurate and quantitative data is available. Therefore, the Classification of plain text medical autopsy reports reduces the time consumption and irregularities. The motive is to design an automatic text classification system that classifies plain text autopsy reports. Therefore, a methodology proposes using different Automatic Text Classification Techniques (ATC). This technique has embedded Feature Extraction, Feature Representation, and Feature Reduction techniques. These techniques use for the construction of classification models that classify the text of autopsy reports. Data sets collected from these types will be helpful in future experiments. Finally, the performance of the classifier measures by using different Evaluation parameters. These Evaluation Measures are Precision, Recall, Accuracy, and F-measure.
Original languageEnglish
Publication statusPublished - 25 Jan 2022
EventInternational Conference on Computer and Information Technology (ICCIT) - Tabuk, Saudi Arabia, Tabuk, Saudi Arabia
Duration: 25 Jan 202227 Jan 2022
https://ieeexplore.ieee.org/document/9711658/authors#authors

Conference

ConferenceInternational Conference on Computer and Information Technology (ICCIT)
Country/TerritorySaudi Arabia
CityTabuk
Period25/01/2227/01/22
Internet address

Fingerprint

Dive into the research topics of 'Machine learning for Autopsy reports Forensic using Text Classification Techniques'. Together they form a unique fingerprint.

Cite this