TY - JOUR
T1 - Motion analysis of match-play in elite U12 to U16 age-group soccer players
AU - Harley, Jamie A.
AU - Barnes, Christopher A.
AU - Portas, Matthew
AU - Lovell, Ric
AU - Barrett, Stephen
AU - Paul, Darren
AU - Weston, Matthew
PY - 2010/11/1
Y1 - 2010/11/1
N2 - The aim of this study was to quantify the motion demands of match-play in elite U12 to U16 age-group soccer players. Altogether, 112 players from two professional soccer clubs at five age-group levels (U12–U16) were monitored during competitive matches (n = 14) using a 5 Hz non-differential global positioning system (NdGPS). Velocity thresholds were normalized for each age-group using the mean squad times for a flying 10 m sprint test as a reference point. Match performance was reported as total distance, high-intensity distance, very high-intensity distance, and sprint distance. Data were reported both in absolute (m) and relative (m · min−1) terms due to a rolling substitute policy. The U15 (1.35 ± 0.09 s) and U16 (1.31 ± 0.06 s) players were significantly quicker than the U12 (1.58 ± 0.10 s), U13 (1.52 ± 0.07 s), and U14 (1.51 ± 0.08 s) players in the flying 10 m sprint test (P < 0.001). The U16 age-group covered significantly more absolute total distance (U16 > U12, U13, U14), high-intensity distance (U16 > U12, U13, U14, U15), very high-intensity distance (U16 > U12, U13), and sprint distance (U16 > U12, U13) than their younger counterparts (P < 0.05). When the data are considered relative to match exposure, few differences are apparent. Training prescription for youth soccer players should consider the specific demands of competitive match-play in each age-group.
AB - The aim of this study was to quantify the motion demands of match-play in elite U12 to U16 age-group soccer players. Altogether, 112 players from two professional soccer clubs at five age-group levels (U12–U16) were monitored during competitive matches (n = 14) using a 5 Hz non-differential global positioning system (NdGPS). Velocity thresholds were normalized for each age-group using the mean squad times for a flying 10 m sprint test as a reference point. Match performance was reported as total distance, high-intensity distance, very high-intensity distance, and sprint distance. Data were reported both in absolute (m) and relative (m · min−1) terms due to a rolling substitute policy. The U15 (1.35 ± 0.09 s) and U16 (1.31 ± 0.06 s) players were significantly quicker than the U12 (1.58 ± 0.10 s), U13 (1.52 ± 0.07 s), and U14 (1.51 ± 0.08 s) players in the flying 10 m sprint test (P < 0.001). The U16 age-group covered significantly more absolute total distance (U16 > U12, U13, U14), high-intensity distance (U16 > U12, U13, U14, U15), very high-intensity distance (U16 > U12, U13), and sprint distance (U16 > U12, U13) than their younger counterparts (P < 0.05). When the data are considered relative to match exposure, few differences are apparent. Training prescription for youth soccer players should consider the specific demands of competitive match-play in each age-group.
U2 - 10.1080/02640414.2010.510142
DO - 10.1080/02640414.2010.510142
M3 - Article
SN - 0264-0414
VL - 28
SP - 1391
EP - 1397
JO - Journal of Sports Sciences
JF - Journal of Sports Sciences
IS - 13
ER -