TY - JOUR
T1 - Multiscale Principal Component Analysis-Signed Directed Graph Based Process Monitoring and Fault Diagnosis
AU - Ali, Husnain
AU - Maulud, Abdulhalim Shah
AU - Zabiri, Haslinda
AU - Nawaz, Muhammad
AU - Suleman, Humbul
AU - Taqvi, Syed Ammar Ali
PY - 2022/3/9
Y1 - 2022/3/9
N2 - The chemical process industry has become the backbone of the global economy. The complexities of chemical process systems have been increased in the last two decades due to online sensor technology, plant-wide automation, and computerized measurement devices. Principal component analysis (PCA) and signed directed graph (SDG) are some of the quantitative and qualitative monitoring techniques that have been widely applied for chemical fault detection and diagnosis (FDD). The conventional PCA-SDG algorithm is a single-scale FDD representation origin, which cannot effectively solve multiple FDD representation origins. The multiscale PCA-SDG wavelet-based monitoring technique has potential because it easily distinguishes between deterministic and stochastic characteristics. This study uses multiscale PCA-SDG to detect, diagnose the root cause and identify the fault propagation path. The proposed method is applied to a continuous stirred tank reactor system to validate its effectiveness. The propagation route of most process failures is detected, identified, and diagnosed, which is well-aligned with the fault description, demonstrating a satisfactory performance of the suggested technique for monitoring the process failures.
AB - The chemical process industry has become the backbone of the global economy. The complexities of chemical process systems have been increased in the last two decades due to online sensor technology, plant-wide automation, and computerized measurement devices. Principal component analysis (PCA) and signed directed graph (SDG) are some of the quantitative and qualitative monitoring techniques that have been widely applied for chemical fault detection and diagnosis (FDD). The conventional PCA-SDG algorithm is a single-scale FDD representation origin, which cannot effectively solve multiple FDD representation origins. The multiscale PCA-SDG wavelet-based monitoring technique has potential because it easily distinguishes between deterministic and stochastic characteristics. This study uses multiscale PCA-SDG to detect, diagnose the root cause and identify the fault propagation path. The proposed method is applied to a continuous stirred tank reactor system to validate its effectiveness. The propagation route of most process failures is detected, identified, and diagnosed, which is well-aligned with the fault description, demonstrating a satisfactory performance of the suggested technique for monitoring the process failures.
U2 - 10.1021/acsomega.1c06839
DO - 10.1021/acsomega.1c06839
M3 - Article
C2 - 35350317
SN - 2470-1343
VL - 7
SP - 9496
EP - 9512
JO - ACS Omega
JF - ACS Omega
IS - 11
ER -