TY - JOUR
T1 - Multistep impregnation method for incorporation of high amount of titania into SBA-15
AU - Wang, Wei
AU - Song, Mo
PY - 2006/2/2
Y1 - 2006/2/2
N2 - A multistep impregnation method was employed to incorporate high amount of titania into the mesoporous SBA-15 silica. No damage to the SBA-15 silica mesostructures was caused by the loading of titania in every cycle. The existence of titania small nanodomains were confirmed to be present by Raman spectra and UV-vis DRS measurements. High dispersion of them was realized via this method according to the results of low-angle X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and N2 sorption measurements. Importantly, no blockage of mesostructures was acknowledged with titania content up to 24.4 wt.%. In comparison, normally used one-step impregnation method led to serious blockage of mesopores as the results of formation of bulk titania particles in the mesochannels. Photo-activity test for the removal of oestrogen showed the superiority of the materials synthesized by multistep impregnation method to one-step impregnation method.
AB - A multistep impregnation method was employed to incorporate high amount of titania into the mesoporous SBA-15 silica. No damage to the SBA-15 silica mesostructures was caused by the loading of titania in every cycle. The existence of titania small nanodomains were confirmed to be present by Raman spectra and UV-vis DRS measurements. High dispersion of them was realized via this method according to the results of low-angle X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and N2 sorption measurements. Importantly, no blockage of mesostructures was acknowledged with titania content up to 24.4 wt.%. In comparison, normally used one-step impregnation method led to serious blockage of mesopores as the results of formation of bulk titania particles in the mesochannels. Photo-activity test for the removal of oestrogen showed the superiority of the materials synthesized by multistep impregnation method to one-step impregnation method.
U2 - 10.1016/j.materresbull.2005.07.034
DO - 10.1016/j.materresbull.2005.07.034
M3 - Article
SN - 0025-5408
VL - 41
SP - 436
EP - 447
JO - Materials Research Bulletin
JF - Materials Research Bulletin
IS - 2
ER -