Noninvasive assessment and classification of human skin burns using images of Caucasian and African patients

Aliyu Abubakar, Hassan Ugail, Ali Maina Bukar

Research output: Contribution to journalArticlepeer-review

Abstract

Burns are one of the obnoxious injuries subjecting thousands to loss of life and physical defacement each year. Both high income and Third World countries face major evaluation challenges including but not limited to inadequate workforce, poor diagnostic facilities, inefficient diagnosis and high operational cost. As such, there is need to develop an automatic machine learning algorithm to noninvasively identify skin burns. This will operate with little or no human intervention, thereby acting as an affordable substitute to human expertise. We leverage the weights of pretrained deep neural networks for image description and, subsequently, the extracted image features are fed into the support vector machine for classification. To the best of our knowledge, this is the first study that investigates black African skins. Interestingly, the proposed algorithm achieves state-of-the-art classification accuracy on both Caucasian and African datasets.

Original languageEnglish
Number of pages15
JournalJournal of Electronic Imaging
Volume29
Issue number04
DOIs
Publication statusPublished - 28 Dec 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Noninvasive assessment and classification of human skin burns using images of Caucasian and African patients'. Together they form a unique fingerprint.

Cite this