Abstract
Titanium oxide layers were produced via a novel catalytic ceramic conversion treatment (CCCT, C3T) on Ti-6Al-4V. This CCCT process is carried out by applying thin catalytic films of silver and palladium onto the substrate before an already established traditional ceramic conversion treatment (CCT, C2T) is carried out. The layers were characterised using scanning electron microscopy, X-ray diffraction, transmission electron microscopy; surface micro-hardness and reciprocating tribo-logical performance was assessed; antibacterial performance was also assessed with S. aureus. This CCCT has been shown to increase the oxide thickness from ~5 to ~100 µm, with the production of an aluminium rich layer and agglomerates of silver and palladium oxide surrounded by vanadium oxide at the surface. The wear factor was significantly reduced from ~393 to ~5 m3/N·m, and a significant reduction in the number of colony-forming units per ml of Staphylococcus aureus on the CCCT surfaces was observed. The potential of the novel C3T treatment has been demonstrated by comparing the performance of C3T treated and untreated Ti6Al4V fixation pins through inserting into simulated bone materials.
Original language | English |
---|---|
Article number | 6554 |
Journal | Materials |
Volume | 14 |
Issue number | 21 |
DOIs | |
Publication status | Published - 1 Nov 2021 |
Bibliographical note
Funding Information:Funding: This research was partially funded by the UK Engineering and Physical Sciences Research Council (EPSRC), grant reference EP/L016206/1.
Funding Information:
Acknowledgments: The one of the authors, Huan Dong, would like to thank the Research Development Fund (MDS1151130) from the College of Medical and Dental Science, the University of Birmingham, UK.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.