Abstract
This article presents an advanced visualization and analytics approach for financial research. Statistical arbitrage, particularly pairs trading strategy, has gained ground in the financial market and machine learning techniques are applied to the finance field. The cointegration approach and long short-term memory (LSTM) were utilized to achieve stock pairs identification and price prediction purposes, respectively, in this project. This article focused on the US stock market, investigating the performance of pairs trading on different types of portfolios (aggressive and defensive portfolio) and compare the accuracy of price prediction based on LSTM. It can be briefly concluded that LSTM offers higher prediction precision on aggressive stocks and implementing pairs trading on the defensive portfolio would gain higher profitability during a specific period between 2016 and 2017. However, predicting tools like LSTM only offer limited advice on stock movement and should be cautiously utilized. We conclude that analytics and visualization can be effective for financial analysis, forecasting and investment strategy.
Original language | English |
---|---|
Article number | e12649 |
Pages (from-to) | 1 |
Number of pages | 25 |
Journal | Expert Systems |
Volume | 38 |
Issue number | 3 |
Early online date | 18 Nov 2020 |
DOIs | |
Publication status | E-pub ahead of print - 18 Nov 2020 |
Externally published | Yes |
Bibliographical note
Funding Information:This work is supported by VC Research (VCR 0000052) and the National Natural Science Foundation of China (Grant No. 61872084).
Funding Information:
National Natural Science Foundation of China, Grant/Award Number: 61872084; VC Research, Grant/Award Number: VCR 0000052 Funding information
Publisher Copyright:
© 2020 John Wiley & Sons Ltd
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.