Abstract
Hydrogen (H2) as an energy carrier can deliver or/and store a huge amount of energy. Hydrogen can be used in internal combustion engines or in fuel cells to generate electricity, with only byproducts water and heat. It is no coincidence that it has been characterized as the energy carrier of the future. Nevertheless, irrespectively of its production method, raw hydrogen must first be separated/purified from other co-produced compounds. Among other separation methods membrane separation processes present numerous advantages and for this reason membrane technology has attracted the interest of many research groups worldwide.
In this review article the main characteristics of three major membrane categories, namely polymeric, metallic and carbon membranes, are summarized. For each membrane material category, both their strengths and limitations are mentioned, discussed and highlighted. In addition, selected articles, mainly those which have been published recently, are reviewed and their highlighted evidences are presented and discussed.
In this review article the main characteristics of three major membrane categories, namely polymeric, metallic and carbon membranes, are summarized. For each membrane material category, both their strengths and limitations are mentioned, discussed and highlighted. In addition, selected articles, mainly those which have been published recently, are reviewed and their highlighted evidences are presented and discussed.
Original language | English |
---|---|
Article number | 205167 |
Journal | Gas Science and Engineering |
Volume | 120 |
DOIs | |
Publication status | Published - 17 Nov 2023 |
Bibliographical note
Publisher Copyright:© 2023 Elsevier B.V.