Predictive and prognostic modelling and simulation of coatings subject to corrosion and mechanical failures

Zulfiqar Ahmad Khan, Jawwad Latif, Hammad Nazir, Adil Saeed, Keith Stokes

Research output: Contribution to journalArticlepeer-review


This research presents analytical and mathematical modelling of coating failures within industrial components, structures, mobile assets and systems due to corrosive degradation and mechanical fracture. These failures lead to several surface problems; therefore, contact mechanics and electrochemistry approaches incorporating induced residual stresses have been adopted to develop a comprehensive solution for the prediction and prognostic of such failures. Experimental study of film cracking and its propagation into substrates, interfacial transient behaviours and film-substrate system has been conducted. A parallel study of corrosive degradation to include cathodic delamination, cathodic blistering and tribo-corrosion of films has been conducted. Experimental and analytical studies of induced residual stresses within the coating and their effects on failure mechanisms and propagation have been completed. A detailed investigation of elastic mismatch at the interfacial contact and interfacial crack tip field has been performed and a complex stress intensity factor is presented. Mathematical derivation of oscillatory singularity, mode mix and interfacial fracture criterion to include adhesion are presented. This paper presents novel mathematical modelling incorporating interfacial crack propagating, diffusion of corrosive species and cathodic blistering for prediction and prognoses of coating failures.
Original languageEnglish
Pages (from-to)487-498
Number of pages11
JournalInternational Journal of Computational Methods and Experimental Measurements
Issue number3
Early online date1 Jan 2018
Publication statusPublished - 2018


Dive into the research topics of 'Predictive and prognostic modelling and simulation of coatings subject to corrosion and mechanical failures'. Together they form a unique fingerprint.

Cite this