TY - JOUR
T1 - Process optimization of green diesel selectivity and understanding of reaction intermediates
AU - Ameen, Mariam
AU - Azizan, Mohammad Tazli
AU - Yusup, Suzana
AU - Ramli, Anita
AU - Shahbaz, Muhammad
AU - Aqsha, Aqsha
PY - 2020/4/1
Y1 - 2020/4/1
N2 - The process optimization of hydrodeoxygenation of rubber seed oil was investigated on diesel range hydrocarbons selectivity and conversion of reaction intermediates. The comprehensive investigation has been performed on effects of reaction parameters and optimization condition using Response Surface Methodology. The experimental runs were carried out over four operating parameters i.e. temperature (300-400 °C), pressure (30–80 bar), weight hourly space velocity (WHSV) (1-3 h−1) and H2: oil ratio (400–1000 N cm3/cm3). The reaction intermediates were investigated over optimized reaction parameters for 5 h time on stream. The current study revealed that triglycerides are completely converted into diesel range hydrocarbons to produce hydrodeoxygenation (HDO) selectivity (C16 + C18) of (19.1 wt%) and decarboxylation (DCOx) selectivity (C16 + C18) of (81.7 wt%) under optimized reaction condition at the temperature of 400 °C, pressure 80 bar, WHSV = 1 h−1, and H2: oil ratio 400 N(cm3/cm3). Among all the variables temperature and weight hourly space velocity have significantly influenced the hydrodeoxygenation selectivity. In contrast, where the increase in temperature and pressure dropped the decarboxylation selectivity. H2: oil ratio was observed with significant effect on conversion of transition state of intermediates to stable state of intermediates at optimized condition. The ANOVA analyses demonstrated that HDO selectivity competitively followed on respective reaction condition.
AB - The process optimization of hydrodeoxygenation of rubber seed oil was investigated on diesel range hydrocarbons selectivity and conversion of reaction intermediates. The comprehensive investigation has been performed on effects of reaction parameters and optimization condition using Response Surface Methodology. The experimental runs were carried out over four operating parameters i.e. temperature (300-400 °C), pressure (30–80 bar), weight hourly space velocity (WHSV) (1-3 h−1) and H2: oil ratio (400–1000 N cm3/cm3). The reaction intermediates were investigated over optimized reaction parameters for 5 h time on stream. The current study revealed that triglycerides are completely converted into diesel range hydrocarbons to produce hydrodeoxygenation (HDO) selectivity (C16 + C18) of (19.1 wt%) and decarboxylation (DCOx) selectivity (C16 + C18) of (81.7 wt%) under optimized reaction condition at the temperature of 400 °C, pressure 80 bar, WHSV = 1 h−1, and H2: oil ratio 400 N(cm3/cm3). Among all the variables temperature and weight hourly space velocity have significantly influenced the hydrodeoxygenation selectivity. In contrast, where the increase in temperature and pressure dropped the decarboxylation selectivity. H2: oil ratio was observed with significant effect on conversion of transition state of intermediates to stable state of intermediates at optimized condition. The ANOVA analyses demonstrated that HDO selectivity competitively followed on respective reaction condition.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85074137558&partnerID=MN8TOARS
U2 - 10.1016/j.renene.2019.10.108
DO - 10.1016/j.renene.2019.10.108
M3 - Article
SN - 0960-1481
VL - 149
SP - 1092
EP - 1106
JO - Renewable Energy
JF - Renewable Energy
ER -