TY - JOUR
T1 - Product Backorder Prediction with Deep Neural Network on Imbalance Data
AU - Shajalal, Md
AU - Hajek, Petr
AU - Abedin, Mohammad
N1 - This work was supported by the scientific research project of the Czech Sciences Foundation Grant No. [19-15498S].
PY - 2021/3/22
Y1 - 2021/3/22
N2 - Taking backorders on products is a common scenario in inventory and supply chain management systems. The ability to predict the likelihood of backorders can surely minimise a company's losses. Because the number of backorders is much lower than the number of orders that ship on time, applying a predictive model for this domain is a challenging task. This paper proposes a model that uses a deep neural network to predict backorders; it handles the data imbalance between backorders and filled orders with efficient techniques. To make the dataset balanced, we employ different techniques that include minority class weight boosting, randomised oversampling, SMOTE oversampling, and a combination of oversampling and undersampling. The balanced training data are used in our proposed, fully connected deep neural networks model to train the predictive model. The predictive model learns the likelihood of product backorders by using the training samples. We conduct experiments on a large benchmark dataset to test the performance of our proposed deep neural network–based model. The experimental results achieve a new state-of-the-art performance and outperform some prominent classification models in terms of standard evaluation metrics and expected profit measure.
AB - Taking backorders on products is a common scenario in inventory and supply chain management systems. The ability to predict the likelihood of backorders can surely minimise a company's losses. Because the number of backorders is much lower than the number of orders that ship on time, applying a predictive model for this domain is a challenging task. This paper proposes a model that uses a deep neural network to predict backorders; it handles the data imbalance between backorders and filled orders with efficient techniques. To make the dataset balanced, we employ different techniques that include minority class weight boosting, randomised oversampling, SMOTE oversampling, and a combination of oversampling and undersampling. The balanced training data are used in our proposed, fully connected deep neural networks model to train the predictive model. The predictive model learns the likelihood of product backorders by using the training samples. We conduct experiments on a large benchmark dataset to test the performance of our proposed deep neural network–based model. The experimental results achieve a new state-of-the-art performance and outperform some prominent classification models in terms of standard evaluation metrics and expected profit measure.
U2 - 10.1080/00207543.2021.1901153
DO - 10.1080/00207543.2021.1901153
M3 - Article
SN - 0020-7543
JO - International Journal of Production Research
JF - International Journal of Production Research
ER -