Rapid assessment of the viability of Mycobacterium avium subsp. paratuberculosis after heating using the optimized phage amplification assay

Antonio Foddai, Chris Elliot, Irene Grant

Research output: Contribution to journalArticlepeer-review

Abstract

Thermal inactivation experiments were carried out to assess the utility of a recently optimized phage amplification assay to accurately enumerate viable Mycobacterium avium subsp. paratuberculosis cells in milk. Ultra-heat-treated (UHT) whole milk was spiked with large numbers of M. avium subsp. paratuberculosis organisms (106 to 107 CFU/ml) and dispensed in 100-μl aliquots in thin-walled 200-μl PCR tubes. A Primus 96 advanced thermal cycler (Peqlab, Erlangen, Germany) was used to achieve the following time and temperature treatments: (i) 63°C for 3, 6, and 9 min; (ii) 68°C for 20, 40, and 60 s; and (iii) 72°C for 5, 10, 15, and 25 s. After thermal stress, the number of surviving M. avium subsp. paratuberculosis cells was assessed by both phage amplification assay and culture on Herrold's egg yolk medium (HEYM). A high correlation between PFU/ml and CFU/ml counts was observed for both unheated (r2 = 0.943) and heated (r2 = 0.971) M. avium subsp. paratuberculosis cells. D and z values obtained using the two types of counts were not significantly different (P > 0.05). The D68°C, mean D63°C, and D72°C for four M. avium subsp. paratuberculosis strains were 81.8, 9.8, and 4.2 s, respectively, yielding a mean z value of 6.9°C. Complete inactivation of 106 to 107 CFU of M. avium subsp. paratuberculosis/ml milk was not observed for any of the time-temperature combinations studied; 5.2- to 6.6-log10 reductions in numbers were achieved depending on the temperature and time. Nonlinear thermal inactivation kinetics were consistently observed for this bacterium. This study confirms that the optimized phage assay can be employed in place of conventional culture on HEYM to speed up the acquisition of results (48 h instead of a minimum of 6 weeks) for inactivation experiments involving M. avium subsp. paratuberculosis-spiked samples.
Original languageEnglish
Pages (from-to)1777-1782
JournalApplied and Environmental Microbiology
Volume76
Issue number6
DOIs
Publication statusPublished - 15 Mar 2010
Externally publishedYes

Fingerprint

Dive into the research topics of 'Rapid assessment of the viability of Mycobacterium avium subsp. paratuberculosis after heating using the optimized phage amplification assay'. Together they form a unique fingerprint.

Cite this