Rate-Based Modeling for Packed Absorption Column of the MEA–CO2–Water System at High-Pressure and High-CO2 Loading Conditions

Muhammad Zubair Shahid, Abdulhalim Shah Maulud, M Azmi Bustam, Humbul Suleman, Hairul Nazirah Abdul Halim, Azmi M Shariff

Research output: Contribution to journalArticle

Abstract

Pandya proposed the first steady-state rate-based model for the chemical absorption process in a packed column using the aqueous CO2–MEA system. Later several modeling studies are also reported based on Pandya’s approach but limited to low pressure (≈1 bar) and low CO2 loadings (<0.5 mol/mol). Recently, the interest in processing CO2-rich natural gas at high-pressure conditions has been increased. Therefore, in this study, the Pandya model is modified to simulate the packed absorption column using an aqueous CO2–MEA system for the high-pressure and high-CO2 loading range. The sequential chemical reactions, along with the respective mass transfer resistances that occur at low (<0.5 mol/mol) and high (>0.5 mol/mol) CO2 loadings, are added. This is achieved by theoretically segmenting the packed column into two sections. This strategy simplifies the computation of subsequent fast and slow reaction regimes that occur over a high-CO2 loading range. The gas–liquid nonideal behavior is described using the Peng–Robinson (EOS) and Kent Eisenberg models. The developed model is effectively validated using the experimental data at low- (≈1.03 bar) and high- (50 bar) pressure conditions over a wide CO2 loading range (≈0–1.0 mol/mol). In a parity plot between measured and simulated CO2 concentration, R2 is found to be 0.99 and 0.97, respectively, for the low- (≈1.03 bar) and high- (50 bar) pressure systems. This indicates that the proposed model can accurately predict the critical design parameters at the high-pressure and high-CO2 loading conditions, with minimum computational intricacy.
Original languageEnglish
Pages (from-to)12235-12246
JournalIndustrial & Engineering Chemistry Research
Volume58
Issue number27
Early online date5 Jun 2019
DOIs
Publication statusPublished - 10 Jul 2019

Cite this