Redox Interconversions and Aqueous Solution Properties of the Cuboidal Complexes [Mo4S4(edta)2]m− (m = 4, 3, 2)

Paul W. Dimmock, Joseph McGinnis, Bee Lean Ooi, A. Geoffrey Sykes

Research output: Contribution to journalArticleResearchpeer-review

18 Citations (Scopus)

Abstract

Redox interconversions of the recently prepared Mo4S4 complexes present in the 4+, 5+, and 6+ states, and in this case with N,N,N′,N′-ethylenediaminetetraacetate (edta) as ligand, [Mo4S4(edta)2]m− (m = 4, 3, and 2, respectively), have been studied at 25 °C, I = 1.00 M (LiClO4). The most readily obtained complex is green [Mo4S4(edta)2]3−, the EPR spectrum of which (in H2O at 10 K) confirms one unpaired electron, gav value 2.48. From cyclic voltammetry in 0.5 M LiClO4, reduction potentials (vs NHE) are [Mo4S4(edta)2]3−/4− (-0.046 V) and [Mo4S4(edta)2]2−/3− (0.65 V). The [Mo4S4(edta)2]4− ion is air-sensitive, and in the presence of H+ and ClO4 is oxidized to [Mo4S4(edta)2]3−. Reactions studied were at pH >3 to limit also dechelation of the edta, except in the case of the fast [Fe(H2O)6]3+ oxidation of [Mo4S4(edta)2]3−, when it was necessary to work at higher [H+] in the range 0.075–0.30 M. The kinetics of the 1:1 cross-reactions with [Co(edta)] (0.37 V; 5.4 × 1033 M−1 s−1) and [Fe(edta)] (0.12 V; 2.4 × 106 M−1 s−1) as oxidants for [Mo4S4(edta)2]4− give a self-exchange rate constant for the [Mo4S4(edta)2]4−/3− couple of 1.5 × 107 M−1 s−1. Similarly with [Co(dipic)2] (0.747 V; 17.8 M−1 s) as the oxidant, a self-exchange rate constant of 7.7 × 105M−1 s−1 is obtained for the [Mo4S4(edta)2] 3−/2− couple. The reaction with [Fe(H2O)6]3+ as oxidant (0.77 V; 6.7 × 104 M−1 s−1 at 10 °C) gives no dependence on [H+] and is too fast to be other than outer-sphere. Both self-exchange reactions are clearly very favorable processes. The comproportionation reaction of [Mo4S4(edta)2] with [Mo4S4(edta)2] is too fast to measure directly by stopped-flow UV-vis spectrophotometry. A rate constant of 2.4 × 1010 M−1 s−1 calculated from the self-exchange values is close to or at the diffusion-controlled limit for reactants of radius ~7.4 Å. The two-electron oxidant [PtCl6]2− (0.726 V) oxidizes [Mo4S4(edta)2]−4 in one-electron steps. Interestingly, the self-exchange rate constant for [Mo4S4(edta)2]4−/3− is ~104 times more favorable than that for the [Mo4S4(H2O)12]4+/5+ exchange.

Original languageEnglish
Pages (from-to)1085-1089
Number of pages5
JournalInorganic Chemistry
Volume29
Issue number5
DOIs
Publication statusPublished - 1 Jan 1990

Fingerprint

Oxidants
Rate constants
aqueous solutions
Electrons
Spectrophotometry
electrons
Cyclic voltammetry
Paramagnetic resonance
spectrophotometry
Ions
Ligands
Oxidation
Kinetics
Oxidation-Reduction
Air
ligands
oxidation
radii
air
kinetics

Cite this

Dimmock, Paul W. ; McGinnis, Joseph ; Ooi, Bee Lean ; Sykes, A. Geoffrey. / Redox Interconversions and Aqueous Solution Properties of the Cuboidal Complexes [Mo4S4(edta)2]m− (m = 4, 3, 2). In: Inorganic Chemistry. 1990 ; Vol. 29, No. 5. pp. 1085-1089.
@article{8438127656de49db963a5097f02d586f,
title = "Redox Interconversions and Aqueous Solution Properties of the Cuboidal Complexes [Mo4S4(edta)2]m− (m = 4, 3, 2)",
abstract = "Redox interconversions of the recently prepared Mo4S4 complexes present in the 4+, 5+, and 6+ states, and in this case with N,N,N′,N′-ethylenediaminetetraacetate (edta) as ligand, [Mo4S4(edta)2]m− (m = 4, 3, and 2, respectively), have been studied at 25 °C, I = 1.00 M (LiClO4). The most readily obtained complex is green [Mo4S4(edta)2]3−, the EPR spectrum of which (in H2O at 10 K) confirms one unpaired electron, gav value 2.48. From cyclic voltammetry in 0.5 M LiClO4, reduction potentials (vs NHE) are [Mo4S4(edta)2]3−/4− (-0.046 V) and [Mo4S4(edta)2]2−/3− (0.65 V). The [Mo4S4(edta)2]4− ion is air-sensitive, and in the presence of H+ and ClO4 − is oxidized to [Mo4S4(edta)2]3−. Reactions studied were at pH >3 to limit also dechelation of the edta, except in the case of the fast [Fe(H2O)6]3+ oxidation of [Mo4S4(edta)2]3−, when it was necessary to work at higher [H+] in the range 0.075–0.30 M. The kinetics of the 1:1 cross-reactions with [Co(edta)]− (0.37 V; 5.4 × 1033 M−1 s−1) and [Fe(edta)]− (0.12 V; 2.4 × 106 M−1 s−1) as oxidants for [Mo4S4(edta)2]4− give a self-exchange rate constant for the [Mo4S4(edta)2]4−/3− couple of 1.5 × 107 M−1 s−1. Similarly with [Co(dipic)2]− (0.747 V; 17.8 M−1 s−) as the oxidant, a self-exchange rate constant of 7.7 × 105M−1 s−1 is obtained for the [Mo4S4(edta)2] 3−/2− couple. The reaction with [Fe(H2O)6]3+ as oxidant (0.77 V; 6.7 × 104 M−1 s−1 at 10 °C) gives no dependence on [H+] and is too fast to be other than outer-sphere. Both self-exchange reactions are clearly very favorable processes. The comproportionation reaction of [Mo4S4(edta)2] with [Mo4S4(edta)2] is too fast to measure directly by stopped-flow UV-vis spectrophotometry. A rate constant of 2.4 × 1010 M−1 s−1 calculated from the self-exchange values is close to or at the diffusion-controlled limit for reactants of radius ~7.4 {\AA}. The two-electron oxidant [PtCl6]2− (0.726 V) oxidizes [Mo4S4(edta)2]−4 in one-electron steps. Interestingly, the self-exchange rate constant for [Mo4S4(edta)2]4−/3− is ~104 times more favorable than that for the [Mo4S4(H2O)12]4+/5+ exchange.",
author = "Dimmock, {Paul W.} and Joseph McGinnis and Ooi, {Bee Lean} and Sykes, {A. Geoffrey}",
year = "1990",
month = "1",
day = "1",
doi = "10.1021/ic00330a035",
language = "English",
volume = "29",
pages = "1085--1089",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "5",

}

Redox Interconversions and Aqueous Solution Properties of the Cuboidal Complexes [Mo4S4(edta)2]m− (m = 4, 3, 2). / Dimmock, Paul W.; McGinnis, Joseph; Ooi, Bee Lean; Sykes, A. Geoffrey.

In: Inorganic Chemistry, Vol. 29, No. 5, 01.01.1990, p. 1085-1089.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Redox Interconversions and Aqueous Solution Properties of the Cuboidal Complexes [Mo4S4(edta)2]m− (m = 4, 3, 2)

AU - Dimmock, Paul W.

AU - McGinnis, Joseph

AU - Ooi, Bee Lean

AU - Sykes, A. Geoffrey

PY - 1990/1/1

Y1 - 1990/1/1

N2 - Redox interconversions of the recently prepared Mo4S4 complexes present in the 4+, 5+, and 6+ states, and in this case with N,N,N′,N′-ethylenediaminetetraacetate (edta) as ligand, [Mo4S4(edta)2]m− (m = 4, 3, and 2, respectively), have been studied at 25 °C, I = 1.00 M (LiClO4). The most readily obtained complex is green [Mo4S4(edta)2]3−, the EPR spectrum of which (in H2O at 10 K) confirms one unpaired electron, gav value 2.48. From cyclic voltammetry in 0.5 M LiClO4, reduction potentials (vs NHE) are [Mo4S4(edta)2]3−/4− (-0.046 V) and [Mo4S4(edta)2]2−/3− (0.65 V). The [Mo4S4(edta)2]4− ion is air-sensitive, and in the presence of H+ and ClO4 − is oxidized to [Mo4S4(edta)2]3−. Reactions studied were at pH >3 to limit also dechelation of the edta, except in the case of the fast [Fe(H2O)6]3+ oxidation of [Mo4S4(edta)2]3−, when it was necessary to work at higher [H+] in the range 0.075–0.30 M. The kinetics of the 1:1 cross-reactions with [Co(edta)]− (0.37 V; 5.4 × 1033 M−1 s−1) and [Fe(edta)]− (0.12 V; 2.4 × 106 M−1 s−1) as oxidants for [Mo4S4(edta)2]4− give a self-exchange rate constant for the [Mo4S4(edta)2]4−/3− couple of 1.5 × 107 M−1 s−1. Similarly with [Co(dipic)2]− (0.747 V; 17.8 M−1 s−) as the oxidant, a self-exchange rate constant of 7.7 × 105M−1 s−1 is obtained for the [Mo4S4(edta)2] 3−/2− couple. The reaction with [Fe(H2O)6]3+ as oxidant (0.77 V; 6.7 × 104 M−1 s−1 at 10 °C) gives no dependence on [H+] and is too fast to be other than outer-sphere. Both self-exchange reactions are clearly very favorable processes. The comproportionation reaction of [Mo4S4(edta)2] with [Mo4S4(edta)2] is too fast to measure directly by stopped-flow UV-vis spectrophotometry. A rate constant of 2.4 × 1010 M−1 s−1 calculated from the self-exchange values is close to or at the diffusion-controlled limit for reactants of radius ~7.4 Å. The two-electron oxidant [PtCl6]2− (0.726 V) oxidizes [Mo4S4(edta)2]−4 in one-electron steps. Interestingly, the self-exchange rate constant for [Mo4S4(edta)2]4−/3− is ~104 times more favorable than that for the [Mo4S4(H2O)12]4+/5+ exchange.

AB - Redox interconversions of the recently prepared Mo4S4 complexes present in the 4+, 5+, and 6+ states, and in this case with N,N,N′,N′-ethylenediaminetetraacetate (edta) as ligand, [Mo4S4(edta)2]m− (m = 4, 3, and 2, respectively), have been studied at 25 °C, I = 1.00 M (LiClO4). The most readily obtained complex is green [Mo4S4(edta)2]3−, the EPR spectrum of which (in H2O at 10 K) confirms one unpaired electron, gav value 2.48. From cyclic voltammetry in 0.5 M LiClO4, reduction potentials (vs NHE) are [Mo4S4(edta)2]3−/4− (-0.046 V) and [Mo4S4(edta)2]2−/3− (0.65 V). The [Mo4S4(edta)2]4− ion is air-sensitive, and in the presence of H+ and ClO4 − is oxidized to [Mo4S4(edta)2]3−. Reactions studied were at pH >3 to limit also dechelation of the edta, except in the case of the fast [Fe(H2O)6]3+ oxidation of [Mo4S4(edta)2]3−, when it was necessary to work at higher [H+] in the range 0.075–0.30 M. The kinetics of the 1:1 cross-reactions with [Co(edta)]− (0.37 V; 5.4 × 1033 M−1 s−1) and [Fe(edta)]− (0.12 V; 2.4 × 106 M−1 s−1) as oxidants for [Mo4S4(edta)2]4− give a self-exchange rate constant for the [Mo4S4(edta)2]4−/3− couple of 1.5 × 107 M−1 s−1. Similarly with [Co(dipic)2]− (0.747 V; 17.8 M−1 s−) as the oxidant, a self-exchange rate constant of 7.7 × 105M−1 s−1 is obtained for the [Mo4S4(edta)2] 3−/2− couple. The reaction with [Fe(H2O)6]3+ as oxidant (0.77 V; 6.7 × 104 M−1 s−1 at 10 °C) gives no dependence on [H+] and is too fast to be other than outer-sphere. Both self-exchange reactions are clearly very favorable processes. The comproportionation reaction of [Mo4S4(edta)2] with [Mo4S4(edta)2] is too fast to measure directly by stopped-flow UV-vis spectrophotometry. A rate constant of 2.4 × 1010 M−1 s−1 calculated from the self-exchange values is close to or at the diffusion-controlled limit for reactants of radius ~7.4 Å. The two-electron oxidant [PtCl6]2− (0.726 V) oxidizes [Mo4S4(edta)2]−4 in one-electron steps. Interestingly, the self-exchange rate constant for [Mo4S4(edta)2]4−/3− is ~104 times more favorable than that for the [Mo4S4(H2O)12]4+/5+ exchange.

UR - http://www.scopus.com/inward/record.url?scp=0342290672&partnerID=8YFLogxK

U2 - 10.1021/ic00330a035

DO - 10.1021/ic00330a035

M3 - Article

VL - 29

SP - 1085

EP - 1089

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 5

ER -