TY - JOUR
T1 - Robotic laser directed energy deposition-based additive manufacturing of tubular components with variable overhang angles: Adaptive trajectory planning and characterization
AU - Kaji, Farzaneh
AU - Jinoop, Arackal Narayanan
AU - Zardoshtian, Ali
AU - Hallen, Patrick
AU - Frikel, German
AU - Tang, Tianyi
AU - Zimny, Mark
AU - Toyserkani, Ehsan
N1 - Funding Information:
The authors acknowledge the financial support from the Federal Economic Development Agency for Southern Ontario (Fed-Dev Ontario) and Promation Engineering, Oakville , Canada.
Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/1/5
Y1 - 2023/1/5
N2 - The present work reports on an adaptive trajectory planning to build tubular components with variable overhang angles using a robotic Laser Directed Energy Deposition (LDED) based Additive Manufacturing process without utilizing support structures. The proposed technique uses a non-parallel slicing methodology to build complex components (e.g., bent pipes) and deploys adaptively varying scanning speed and tool orientation. The variation in scanning speed aids in having point-to-point variable layer height enabling non-parallel deposition while changing the tool orientation during deposition permits the manufacturing of support-free bent pipe parts. The bent pipes with 45° and 90° bents were built using an in-house developed LDED system and the built parts are characterized for geometry, density, microstructure, and microhardness. The geometrical analysis indicates a deviation in the range of + 0.5 mm to − 0.5 mm, with minimal roundness deviation at different sections. The density analysis of the segments extracted from the bent pipe reveals a density > 98%, with the presence of a few lack of fusion pores and gas pores at isolated locations. The microstructure and microhardness studies show that regions built with higher scanning speeds have a finer grain structure and higher average hardness. The study paves a path to build defect-free and dimensionally stable complex-shaped components with varying overhang angles using LDED.
AB - The present work reports on an adaptive trajectory planning to build tubular components with variable overhang angles using a robotic Laser Directed Energy Deposition (LDED) based Additive Manufacturing process without utilizing support structures. The proposed technique uses a non-parallel slicing methodology to build complex components (e.g., bent pipes) and deploys adaptively varying scanning speed and tool orientation. The variation in scanning speed aids in having point-to-point variable layer height enabling non-parallel deposition while changing the tool orientation during deposition permits the manufacturing of support-free bent pipe parts. The bent pipes with 45° and 90° bents were built using an in-house developed LDED system and the built parts are characterized for geometry, density, microstructure, and microhardness. The geometrical analysis indicates a deviation in the range of + 0.5 mm to − 0.5 mm, with minimal roundness deviation at different sections. The density analysis of the segments extracted from the bent pipe reveals a density > 98%, with the presence of a few lack of fusion pores and gas pores at isolated locations. The microstructure and microhardness studies show that regions built with higher scanning speeds have a finer grain structure and higher average hardness. The study paves a path to build defect-free and dimensionally stable complex-shaped components with varying overhang angles using LDED.
UR - http://www.scopus.com/inward/record.url?scp=85144592017&partnerID=8YFLogxK
U2 - 10.1016/j.addma.2022.103366
DO - 10.1016/j.addma.2022.103366
M3 - Article
SN - 2214-8604
VL - 61
JO - Additive Manufacturing
JF - Additive Manufacturing
M1 - 103366
ER -