Studying the impact of reservoir temperature, water salinity and CO2 dryness on CO2 injectivity during geological CO2 sequestration

Parvin Ahmadi Sefiddashti, Faizan Ahmad, Mohammad Azizur Rahman, Sina Rezaei Gomari

Research output: Contribution to journalArticlepeer-review

Abstract

Carbon capture and storage (CCS) is proved to be effective measure for reducing CO2 emissions. whilst the world still highly depends on the use of fossil fuel energy, this method is necessary for reaching the world’s 1.5 °C goal. Saline aquifers among all possible underground formations are most common targeted ones for CO2 storage due to their frequent presence, and large storage capacity. However, this storage option suffers from sufficient well injectivity to inject large volumes of CO2 at acceptable rates through a minimum number of wells. The injectivity impairment/reinforcement happens through mineral dissolution, fine particle movement, salt precipitation and hydrate formation (known so far). Each of these mechanisms will be more dominant in injectivity alteration at different distance from the injection point depending on reservoir pressure and temperature, formation water salinity, rock mineralogy, and flow rate of CO2 injection as well as its dryness. In this study we have chosen a commercial software Eclipse 300 together with an open-source code to investigate the impact of formation characteristics, CO2 -Brine-Rock interaction, pressure, temperature as well as injection rate on injectivity alteration. The goal for this work is to provide a workflow which can help predicting injectivity alteration using the existing tools. Simulation results show that permeability is affected severely by salt precipitation during CO2 injection. Combined static and dynamic parameter study demonstrate that the injection rate plays a crucial role in size and expansion of CO2 plume as well as growth rate of dry out zone length, amount of salt precipitation and length of equilibrium region. The higher the injection rate, the quicker activation of the capillary and gravity force which leads to drag more brine to near well-bore resulting in higher volume fraction of salt precipitation. However, low injection rate could result in smaller CO2 plume, shorter dry out zone and longer equilibrium region in term of distance from injection point. Thus, optimizing the injection rate regarding reservoir parameters i.e., temperature, pressure and in-situ salinity, will lead to higher storage capacity as well as well performance and maintenance.
Original languageEnglish
Article number23053
Number of pages8
JournalVibroengineering Procedia
DOIs
Publication statusPublished - 2 Mar 2023

Fingerprint

Dive into the research topics of 'Studying the impact of reservoir temperature, water salinity and CO2 dryness on CO2 injectivity during geological CO2 sequestration'. Together they form a unique fingerprint.

Cite this