Surface features of a Mononegavirales matrix protein i nd i cate sites of membrane interaction

Victoria A. Money, Helen K. McPhee, Jackie A. Mosely, John M. Sanderson, Robert P. Yeo

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

The matrix protein (M) of respiratory syncytial virus (RSV), the prototype viral member of the Pneumovirinae (family Paramyxoviridae, order Mononegavirales), has been crystallized and the structure determined to a resolution of 1.6 Å. The structure comprises 2 compact β-rich domains connected by a relatively unstructured linker region. Due to the high degree of side-chain order in the structure, an extensive contiguous area of positive surface charge covering ≈600 Å2 can be resolved. This unusually large patch of positive surface potential spans both domains and the linker, and provides a mechanism for driving the interaction of the protein with a negatively-charged membrane surface or other virion components such as the nucleocapsid. This patch is complemented by regions of high hydrophobicity and a striking planar arrangement of tyrosine residues encircling the C-terminal domain. Comparison of the RSV M sequence with other members of the Pneumovirinae shows that regions of divergence correspond to surface exposed loops in the M structure, with the majority of viral species-specific differences occurring in the N-terminal domain.

Original languageEnglish
Pages (from-to)4441-4446
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume106
Issue number11
DOIs
Publication statusPublished - 17 Mar 2009

Bibliographical note

Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.

Fingerprint

Dive into the research topics of 'Surface features of a Mononegavirales matrix protein i nd i cate sites of membrane interaction'. Together they form a unique fingerprint.

Cite this