Abstract
The catalytic pyrolysis of Chlorella vulgaris, high-density polyethylene (Pure HDPE) and, their binary mixtures were conducted to analyse the kinetic and thermodynamic performances from 10 to 100 K/min. The kinetic parameters were computed by substituting the experimental and ANN predicted data into these iso-conversional equations and plotting linear plots. Among all the iso-conversional models, Flynn-Wall-Ozawa (FWO) model gave the best prediction for kinetic parameters with the lowest deviation error (2.28–12.76%). The bifunctional HZSM-5/LS catalysts were found out to be the best catalysts among HZSM-5 zeolite, natural limestone (LS), and bifunctional HZSM-5/LS catalyst in co-pyrolysis of binary mixture of Chlorella vulgaris and HDPE, in which the Ea of the whole system was reduced from range 144.93–225.84 kJ/mol (without catalysts) to 75.37–76.90 kJ/mol. With the aid of artificial neuron network and genetic algorithm, an empirical model with a mean absolute percentage error (MAPE) of 51.59% was developed for tri-solid state degradation system. The developed empirical model is comparable to the thermogravimetry analysis (TGA) experimental values alongside the other empirical model proposed in literature
Original language | English |
---|---|
Article number | 107391 |
Number of pages | 14 |
Journal | Journal of Environmental Chemical Engineering |
Volume | 10 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Jun 2022 |
Bibliographical note
Funding Information:The authors would like to express their sincere gratitude to the Curtin University Malaysia and the Centre of Biofuel and Biochemical (CBBR) of Universiti Teknologi PETRONAS (UTP) for the technical support. Also, Loy A. C. M. would like to thank the Australian Government , Australia for providing financial (Research Training Program) support to this project.
Publisher Copyright:
© 2022 Elsevier Ltd.