Abstract
The power of nanomaterials has been hampered by the difficulty in controlling their size and morphology. Monodispersed silica particles with different nanometer sizes synthesized by a novel spray method remove the obstacles for the commercialization of nanomaterials at a global level. The size and shape of the silica particles were effectively controlled by simple hydrolysis and condensation reaction. Morphological images (SEM and TEM) reveal the smooth and spherical shaped silica particles with homogeneous distribution. Structural and luminescence properties of the silica particles were examined by FT-IR absorption spectroscopy and photoluminescence. A very low weight percentile loss of the silica particle ensures its high thermal stability. The high surface areas of about 55 and 25 m2/g were achieved for 90 and 220 nm particle sized silica particles, respectively. The resultant silica particles can be easily suspended in water and would be useful for variety of applications.
Original language | English |
---|---|
Pages (from-to) | 684-687 |
Number of pages | 4 |
Journal | Synthetic Metals |
Volume | 158 |
Issue number | 17-18 |
DOIs | |
Publication status | Published - 1 Oct 2008 |
Externally published | Yes |