Abstract
Graphene quantum dots grafted with polyethyleneimine (GQDs-PEI) and Au@Ag core-shell nanoparticles blend was demonstrated to be a novel biosensing nanoprobe for the rapid and highly sensitive detection of biothiols such as cysteine (Cys), homocysteine (Hcys) and glutathione (GSH). The fluorescence emission of GQDs-PEI was quenched efficiently upon interaction with Au@Ag core-shell nanoparticles. The quenched fluorescence emission of the GQDs-PEI was restored in the presence of the biothiols. The fluorimetric sensing is based on the strong affinity between the mercapto (SH) groups of the biothiols and the Au@Ag core-shell nanoparticles by which the interaction between GQDs-PEI and Au@Ag core-shell nanoparticles was disrupted with a consequent modulation ('turn-on') of the quenched GQDs-PEI emission. Thus, a new, simple, rapid and highly sensitive fluorescence nanoprobe for detecting biothiols has been developed in this work.
| Original language | English |
|---|---|
| Pages (from-to) | 96-105 |
| Number of pages | 10 |
| Journal | Journal of Photochemistry and Photobiology A: Chemistry |
| Volume | 324 |
| DOIs | |
| Publication status | Published - 22 Mar 2016 |
| Externally published | Yes |
Bibliographical note
Funding Information:This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF), South Africa through DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology (UID 62620 ) as well as Rhodes University/DST Centre for Nanotechnology Innovation, Rhodes University, South Africa.
Publisher Copyright:
© 2016 Elsevier B.V. All rights reserved.