TY - JOUR
T1 - Uncovering nitrogen accumulation in a large mixed land-use catchment: Implications for national-scale budget studies and environmental management
AU - Fan, Xiangwen
AU - Worrall, Fred
AU - M. Baldini, Lisa
AU - Burt, Tim P.
PY - 2024/9/15
Y1 - 2024/9/15
N2 - Accurately quantifying the location and extent of nitrogen accumulation is crucial for mitigating its severe impacts on climate and the environment. Here we estimated a spatial total N budget and its input/output fluxes from different land uses on a 1 km2 grid scale across the whole of a large, mixed land use catchment (Trent, UK). With a long history of water quality monitoring, the Trent catchment provides a unique and ideal test bed for developing a detailed nitrogen budget and determining where N accumulation occurs. In 2015, a significant 35 (±5) ktonnes N accumulation was found, with 31 % of the area acting as a net source and 69 % as a net sink. The spatial budget ranged from −16 (±5) to 45 (±7) tonnes N/km2/year. Using this budget, we identified N accumulation and loss areas under diverse land uses and conducted strategic soil sampling and C/N analysis. Notably, grassland subsoil exhibited nitrogen buildup compared to arable land, spotlighting intricate land use, nitrogen, and soil dynamics. The study emphasizes the need for targeted nutrient management to prevent potential environmental repercussions linked to subsoil nitrogen accumulation, especially in grassland contexts.
AB - Accurately quantifying the location and extent of nitrogen accumulation is crucial for mitigating its severe impacts on climate and the environment. Here we estimated a spatial total N budget and its input/output fluxes from different land uses on a 1 km2 grid scale across the whole of a large, mixed land use catchment (Trent, UK). With a long history of water quality monitoring, the Trent catchment provides a unique and ideal test bed for developing a detailed nitrogen budget and determining where N accumulation occurs. In 2015, a significant 35 (±5) ktonnes N accumulation was found, with 31 % of the area acting as a net source and 69 % as a net sink. The spatial budget ranged from −16 (±5) to 45 (±7) tonnes N/km2/year. Using this budget, we identified N accumulation and loss areas under diverse land uses and conducted strategic soil sampling and C/N analysis. Notably, grassland subsoil exhibited nitrogen buildup compared to arable land, spotlighting intricate land use, nitrogen, and soil dynamics. The study emphasizes the need for targeted nutrient management to prevent potential environmental repercussions linked to subsoil nitrogen accumulation, especially in grassland contexts.
U2 - 10.1016/j.catena.2024.108366
DO - 10.1016/j.catena.2024.108366
M3 - Article
SN - 0341-8162
VL - 246
JO - Catena
JF - Catena
M1 - 108366
ER -