Abstract
The development of efficient data science applications is often im- peded by unbearably long execution time and rapid RAM exhaus- tion. Since API documentation is the primary information source for troubleshooting, we investigate how performance concerns are documented in popular data science libraries. Our quantitative re- sults reveal the prevalence of data science APIs that are documented in performance-related context and the infrequent maintenance activities on such documentation. Our qualitative analyses further reveal that crowd documentation like Stack Overflow and GitHub are highly complementary to official documentation in terms of the API coverage, the knowledge distribution, as well as the specific information conveyed through performance-related content. Data science practitioners could benefit from our findings by learning a more targeted search strategy for resolving performance issues. Researchers can be more assured of the advantages of integrating both the official and the crowd documentation to achieve a holistic view on the performance concerns in data science development.
Original language | English |
---|---|
Publication status | Published - 21 Sept 2020 |
Event | The 35th IEEE/ACM International Conference on Automated Software Engineering - Melbourne, Australia Duration: 21 Sept 2020 → 25 Sept 2020 https://conf.researchr.org/home/ase-2020 |
Conference
Conference | The 35th IEEE/ACM International Conference on Automated Software Engineering |
---|---|
Abbreviated title | ASE 2020 |
Period | 21/09/20 → 25/09/20 |
Internet address |